• Title: Keyhole contour

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 26 | Keyhole contour

  • Bright video: Watch on YouTube

  • Dark video: Watch on YouTube

  • Ad-free video: Watch Vimeo video

  • Forum: Ask a question in Mattermost

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca26_sub_eng.srt missing

  • Download bright video: Link on Vimeo

  • Download dark video: Link on Vimeo

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $D = \mathbb{C} \setminus { z \in \mathbb{R} \mid z \leq 0 }$ and $\gamma$ be given by a keyhole contour in $D$. Is Cauchy’s integral theorem applicable?

    A1: Yes, we have $ \oint_{\gamma} f(z) , dz = 0 $.

    A2: No, we have $ \oint_{\gamma} f(z) , dz \neq 0 $.

    A3: One needs more information!

    Q2: Let $g: B_2(0) \setminus {0 } \rightarrow \mathbb{C}$ be holomorphic. For every $\varepsilon < 2$, define the curve $\gamma_{\varepsilon}: [0,2\pi] \rightarrow \mathbb{C}$ given by $\gamma_{\varepsilon}(t) = \varepsilon \exp(i t)$. Which claim is, in general, correct?

    A1: $$ \oint_{\gamma_1} f(z) , dz = \oint_{\gamma_{\varepsilon}} f(z) , dz $$ for all $0 < \varepsilon < 2$.

    A2: $$ \oint_{\gamma_1} f(z) , dz \neq \oint_{\gamma_{\varepsilon}} f(z) , dz $$ for all $0 < \varepsilon < 2$.

    A3: $$ \oint_{\gamma_{\varepsilon}} f(z) , dz = 0 $$ for all $0 < \varepsilon < 2$.

    A4: $$ \oint_{\gamma_{\varepsilon}} f(z) , dz = 2 i \pi $$ for all $0 < \varepsilon < 2$.

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?