
-
Title: Keyhole contour
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 26 | Keyhole contour
-
Bright video: Watch on YouTube
-
Dark video: Watch on YouTube
-
Ad-free video: Watch Vimeo video
-
Forum: Ask a question in Mattermost
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca26_sub_eng.srt missing
-
Download bright video: Link on Vimeo
-
Download dark video: Link on Vimeo
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $D = \mathbb{C} \setminus { z \in \mathbb{R} \mid z \leq 0 }$ and $\gamma$ be given by a keyhole contour in $D$. Is Cauchy’s integral theorem applicable?
A1: Yes, we have $ \oint_{\gamma} f(z) , dz = 0 $.
A2: No, we have $ \oint_{\gamma} f(z) , dz \neq 0 $.
A3: One needs more information!
Q2: Let $g: B_2(0) \setminus {0 } \rightarrow \mathbb{C}$ be holomorphic. For every $\varepsilon < 2$, define the curve $\gamma_{\varepsilon}: [0,2\pi] \rightarrow \mathbb{C}$ given by $\gamma_{\varepsilon}(t) = \varepsilon \exp(i t)$. Which claim is, in general, correct?
A1: $$ \oint_{\gamma_1} f(z) , dz = \oint_{\gamma_{\varepsilon}} f(z) , dz $$ for all $0 < \varepsilon < 2$.
A2: $$ \oint_{\gamma_1} f(z) , dz \neq \oint_{\gamma_{\varepsilon}} f(z) , dz $$ for all $0 < \varepsilon < 2$.
A3: $$ \oint_{\gamma_{\varepsilon}} f(z) , dz = 0 $$ for all $0 < \varepsilon < 2$.
A4: $$ \oint_{\gamma_{\varepsilon}} f(z) , dz = 2 i \pi $$ for all $0 < \varepsilon < 2$.
-
Last update: 2024-10