
-
Title: Antiderivatives
-
Series: Complex Analysis
-
YouTube-Title: Complex Analysis 20 | Antiderivatives
-
Bright video: https://youtu.be/00ab7OTsl6s
-
Dark video: https://youtu.be/-oOhmEUXNDg
-
Ad-free video: Watch Vimeo video
-
Forum: Ask a question in Mattermost
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ca20_sub_eng.srt missing
-
Download bright video: Link on Vimeo
-
Download dark video: Link on Vimeo
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z) = z$. Which of the following functions is not an antiderivative of $f$?
A1: $F(z) = z^2$
A2: $F(z) = \frac{1}{2} z^2$
A3: $F(z) = \frac{1}{2} z^2 + 2$
A4: $F(z) = \frac{1}{2} z^2 - 1$
Q2: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ two holomorphic functions. Which statement is not correct?
A1: $ \frac{d}{dz}(f \circ g)(z) = f( g(z) ) g^\prime(z) $
A2: $ \frac{d}{dz}(f \circ g)(z) = f^\prime( g(z) ) g^\prime(z) $
A3: $ \frac{d}{dz} f(g(z)) = f^\prime( g(z) ) g^\prime(z) $
A4: $ \frac{d}{dz} f(g(z)) =\frac{df}{dz} ( g(z) ) \frac{dg}{dz}(z) $
Q3: Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function and $\gamma$ a closed curve in $U$. Which statement is correct?
A1: $$ \oint_{\gamma} f(z) , dz = 0 $$
A2: $$ \oint_{\gamma} f(z) , dz \neq 0 $$
A3: One needs more information!
Q4: Let $f: \mathbb{C} \setminus { 0 } \rightarrow \mathbb{C}$ be the holomorphic function given by $f(z) = \frac{1}{z^4}$. Which statement is correct for a closed curve $\gamma$?
A1: $$ \oint_{\gamma} f(z) , dz = 0 $$
A2: $$ \oint_{\gamma} f(z) , dz \neq 0 $$
A3: One needs more information!
-
Last update: 2024-10