• Title: Antiderivatives

  • Series: Complex Analysis

  • YouTube-Title: Complex Analysis 20 | Antiderivatives

  • Bright video: https://youtu.be/00ab7OTsl6s

  • Dark video: https://youtu.be/-oOhmEUXNDg

  • Ad-free video: Watch Vimeo video

  • Forum: Ask a question in Mattermost

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ca20_sub_eng.srt missing

  • Download bright video: Link on Vimeo

  • Download dark video: Link on Vimeo

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z) = z$. Which of the following functions is not an antiderivative of $f$?

    A1: $F(z) = z^2$

    A2: $F(z) = \frac{1}{2} z^2$

    A3: $F(z) = \frac{1}{2} z^2 + 2$

    A4: $F(z) = \frac{1}{2} z^2 - 1$

    Q2: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ two holomorphic functions. Which statement is not correct?

    A1: $ \frac{d}{dz}(f \circ g)(z) = f( g(z) ) g^\prime(z) $

    A2: $ \frac{d}{dz}(f \circ g)(z) = f^\prime( g(z) ) g^\prime(z) $

    A3: $ \frac{d}{dz} f(g(z)) = f^\prime( g(z) ) g^\prime(z) $

    A4: $ \frac{d}{dz} f(g(z)) =\frac{df}{dz} ( g(z) ) \frac{dg}{dz}(z) $

    Q3: Let $f: U \rightarrow \mathbb{C}$ be a holomorphic function and $\gamma$ a closed curve in $U$. Which statement is correct?

    A1: $$ \oint_{\gamma} f(z) , dz = 0 $$

    A2: $$ \oint_{\gamma} f(z) , dz \neq 0 $$

    A3: One needs more information!

    Q4: Let $f: \mathbb{C} \setminus { 0 } \rightarrow \mathbb{C}$ be the holomorphic function given by $f(z) = \frac{1}{z^4}$. Which statement is correct for a closed curve $\gamma$?

    A1: $$ \oint_{\gamma} f(z) , dz = 0 $$

    A2: $$ \oint_{\gamma} f(z) , dz \neq 0 $$

    A3: One needs more information!

  • Last update: 2024-10

  • Back to overview page


Do you search for another mathematical topic?