

ON STEADY

The Bright Side of Mathematics

 $\stackrel{(}{\Rightarrow} Q_j \subseteq X \text{ dense } (\overline{Q_j} = X) + \text{ open}$ $\implies \bigcap_{i=1}^{\infty} Q_i \text{ is also dense}$

Baire Category Theorem

(X, d) <u>complete</u> metric space

A countable intersection of dense open sets is dense:

Notions: Let
$$(X, J)$$
 be a topological space.
(1) $M \subseteq X$ nowhere dense (in X) if $(\overline{M})^{\circ} = \emptyset$
(2) $M \subseteq X$ meagre (in X)
(set of first category (in X)) $: \iff M = \bigcup_{j=1}^{\infty} S_j^{\leftarrow}$ nowhere dense
(3) $M \subseteq X$ nonmeagre (in X)
(set of second category (in X)) $: \iff M$ is not meagre
Baire category theorem: (X, d) complete metric space
 \implies each open set $(\neq \emptyset)$ is of second category (in X)

<u>Special version</u>: (X, d) <u>complete</u> metric space $\implies X$ is of second category (in X)