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Algebra — Part 1
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Algebra — Part 2

Definition:  Let A be a set.

A map F- A x A — A is called a binary operation on A .

Instead of F((O\,la)), we write  aob or axb or aFb

or CL-L or O\B or 0\+L

<

juxtaposition
Closure Law: aob € A for all a,beA

Example: A: {’l‘ 1,33 , o A X A A binary operation defined by:

operation table: (: 1 2 3 1o
ol =1
1 1 1 not equal:
led =3
Ly 3 3 1
31 2 v 1

<1oz)03 =13 =12
10(2°3> =1 °1 =3

not egual!

Definition:

A pair (S, 0) where S is a set and o is a binary operation on S

is called a semigroup if

O\O(EOC) = (0\0 E)°C for all a,b,ce S

ANY
“aoboc

(associative)
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Example:  set of funotions F(R) =1 § | £ R—R fm»ﬁon}
together with composition o : F(R) x F(R) — F(R) :
Take §,, 5, 5,€ F(R) and defiee g =§,o(f,o8,) :R—R
h=(fo8)es, :R—R
g0 = eo(8o8) () = 5((5.25)60) = 5(5.05,00)
h0) = (5005 () = (50 8)(560) = 5,(5.(5,6)
= (F(R), o) semigroup
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Algebra — Part 3

(Sl o-) semiqvoup "\'ﬁ> 665 Wi‘\'h ol = O = ooeEe

Definition:  An element €€ S is called

o left neutral (-a left identity)

con = a for all ae S

o vight veutral (-a right identity) ace = a  for all ael

o neutral (=an identity) coa = a=aoce foral acl

Example: 5 = UE z) ‘ x/)’em} with o given by the matrix multiplication
L> (S, 07 semigroup
10
(0 0)(2 Z) = (T) >(;> = (l g) left neutral
11y (10 _
HIME

Lo A N 10 |
(0 0)7: (o o) _> (0 0> not right neutral

Facl: Let e € § be left neutral and €€ § be right neutral,

=e

ecol = Q4 :> E€ o ’Cv = ré:
- _ aed
forb=e I _> ec=8e

.—h
Q
<
s

bo& = b

Definition:

(S, O) semigroup with identity €  (fhe reufral element) | O\,L,CG g

e« XeS s called a left inverse of o if Xoa =

c
left invertible
. YE S is called a right inverse of L if Lo y = ¢

right invertible
z2oC = €@ =Cot?
R

e 2€ S s called an inverse of ¢

invertible



Example: Functions §- [0;1_] —> [0.4] ) (J'_([O'{D/ 0) semigroup

Neutral element: id : [0,1_] —> [0,1—] , XF>X A

1
~ 1
Right invertible : (. [04] = [0.4] , x> 4(x-1) M_>

z 1

Right inverse oF,S_V: 3: [011-] —> [0.1—_‘ P X %R 1-—1{ 1%

L> gvoj:iol | ’.|>

ﬁ 9 ? # id Remember:

surjective <{=> right invertible
injective <{=> left invertible
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Algebra — Part 4

_I_
(S, 0) semigroup  ~—=> peytral element ~—>> group

iInverses

Definition: A pair (G, 0) is called a group if:

(a) (G, O) semigroup .
(b) There is a left identity @eé.

(¢) €ach ac G is left invertible, i.e. there exists bel with boa = e .

This implies: A set (5 together with a binary operation ois a group if:

(61) &°(l3°c) - (0\" l:)oc for all "\IL/CGG (associative)

(Gl) There is a unigue identity ech: coa = & =0ao°e
for all ae

((,3) Each O\QG is invertible: dbeG : boa= e =aob

NP

: l) (common notation)



Proof:  (a) => (61) v4

Let ac G. (b) There is a left identity ect,

(¢) €ach ac G is left invertible, i.e. there exists bel with boa = e .

(x)

Choose LQG
vthba =e. Then ab = al(eb) 2 a(ba)b =(ab)(ab). &0

Choose ce (G with ¢ (fk()) = € (by (c))

= ab Ze(ab) ;/c wh)eb) B @by = e = (63)

=> ae Y q((;a) = (O\B)a :—l./ea = a => (él)f
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Algebra - Part 5

Grou?p: G Tfogether with binary operation o and:
(G1) associativity &o(l:°<:7 = (0~°5)°C for all a,b,ce (5
(G2) unique identity €€ eca = a=ace foral ae(

(G3) all inverses exist: VQ&ZG dbeG: boa = e =aob

NP

011:: l-) (common hotation)
Uniqueness of inverses:
(S, 0) semigroup with identity e€ S. (a\o y = e)

If acS is a left invertible with X (xo o = e) and right invertible wi‘fhy)l2

then x =Y.

Proof: X:XOC:XO(c\oy>:<XOG\>oy:eoy:y ]

(C) (Z, +) with identity 0 and inverses 3+ (—3) =0
-1
(Q\ iOl J '> with identity 1 and inverses _1‘? (.%) = {
(Ehxh , ) with identity (0 0}

0--- 0

({AQ G:Mh| det(A) # 0} , ) with identity (1‘-.1>



General example: | et (S, °) be a semigroup with identity ec S,

S* = io\e S | a s inverﬂble}
{

O exists

Then (S*, o) is a grou?.

Proof: (1) eope = e = ekt S* with 6:1: e :> (G2) /

N o =
D acs” = aras=e 5 e st > -~

-1 - -

0o ' = ¢ 5‘
aSSOG|aTIVITy in
(3) Q,BGS >(Lo& (0\0'0) ( oo\)OL = €
associafivity in SV\(B\J

(qok) (_1 _1 ZC\O(EOL;1)°0_~1:8

= (S*, O) is a well-defined semigroup
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¢ 4 A\gebra - Part 6

(S, 07 semigroup. Let's wrife: ab:= acb

\heuwal element + all inverses
N\

group

Fact: Let (G, 0) be a group and a,L,x,ye G . Then:

AX = qy = X = >/ (left cancellation property)
Xxb = )’L’ = X = Yy (right cancellation property)
Proof: X = XE = X ([, L;1> = ()( E) l—,-1 :(}/l;) t;-1 = >/ ([, L;1> = >/

/

heutral element

Definition: (S, 07 semigroup (of grou?p).

The order of S is the humber of elements in S :
|S| =#S i S is finite

ord( S) :=
o0 if S is not finite

Lemma: Let (S, O) be a semigroup. Then:

(S;°7 IS group <:> Va,l;(—:S E‘x,YeS: ax =b , )/Q:L,

Proof: (:>) Assume (S, 0) is a group. For given Q,L) €S, set:

X = d1l> ] )’ = 6\1
(<:> For given ae€ S , There are X, Y€ S with ax = a ;Yo = a.
Let's call e,-.::)/ TN = O\
£l,e‘r's take beS. Then there is XeS with aX =b.
e get: elb = e(ax) Z(QO\BX = aX = b :> C left neutral

For given be S there is ’)765 such that: ')?’E = e => b left invertivle

Part 4

:> (S, O) is a group 0



Proposition: Let (S, O) be a semigroup with ord( S) < oa, Then:

(_S, °) is grou?p <:> both cancellation properties hold

ax = ay = X = Y
xb=yb = x=y
Proof:  For any map 5:15 — 5
NG
§ is ihjective <> 5: is surjective '*'
|

For given 0\65, define §q15—> S and j&:5—> S by

\S-‘o\(x) = aX ) j&(x) = Xa .
Theh we have: both cancellation properties hold

= Vae$: f(x) = fly) = X =)
jm(x) :j«(Y) = X =)

> Vael:  §. and g, are injective
(> Vael:  §, and Ja are surjective @
{=> VaecS: for every beS there are L
x,ye S : fq,(lx) =b and 9.(y) = b
Il

A X
Lemma Y &

(= (S, 07 is group O
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Algebra - Part 7

rotation rotation rotation
Grou?p:

3\ (4 2\ (3 N\ (2 3\ (1

reflection | b w

N\ (3 Q=

symmetry operations <« permutations of i1,2 3} —: X

ﬁ A i}:)(ex | f bijec‘tive}

s symmetric group

example:| (1) =3 S =2
502) =2 | | 5(2) =3
5.03) =1 | 5.(3) =+
= (S,,0)

composition of maps



We get: <§Q°§L)(1> =1 | (_.ﬂo\&)“) - 2
<§a°5L)(2> =3 (§Lo§“>(2> - 1
(e 5@ =2, (L))

a L {,
ﬁ ﬁé :> hot commutative!

Definition: A group (G, 0) (or semigroup) is called abelian or commutative

> b

A
A

)
(IN)

if aob = boa for all q,laeé,

Examples: (Z, +7 , (@\ jot ) ; (rR, +) , ((]:\‘)0}/ \) are abelian.

Genheral example: G = ia/ L e‘i ol o b e
al at |:1| q
group with three elements LI b b
ela b e
~1 -1
1stcase: o =b , b =a = aocb =ce

~=>> abelian grou
lJOOL = & 30?

Ind case: 4@ = o /L-1:(7 = (an>0(0\°l>>: Louo;ot

=&
_1 - e
=> (O\Ol)> — (Lo a)
74
oo b ~—> abelian grou?
Noh-abeliah group:  Symmetric group S, |53| =3l =4 ~
Il order 6

Dihedral group D,
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-00-
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Algebra - Part 8
modulus calculation: 13 - 12 = 1
,\ modulus XNmY &> There is <1eZ
¢ S X—)’ = g m
% -112= 0 1

X = Y (mod m)

Integers modulo m: Zm ) Z/MZ ) Z/m ) Z/Nm

% = i[o], m,...,[m—ﬂ} | me N

—10 y} _ZZ/

define addition: D{\ + Dﬂ P = D& + []Vweu-deﬁhed

D{\ + [“ k] = [O__\</ identity
Rk\\~——— inverse

:> (Zm ' +) abelian group of order m

for example with m =10 : [1] = iz,'\q,z./,,m,__.,}

example: ( Z, | +) 0 (0] =§0,2,%,., 2,4, % [(; [[Oo]] 31
[1] :i1,3,5,},-..,-1,-3,...} M M [0]

(ZG ) [o) = {o,e,n,...,_,f,,-n,..}

t | (0] (1] (2] (3] (4) (3]
11, (21,03}, 4], s) (01 (0] (1) (2) (3] (4] (5]

(1|01 [2)

(2)| (2] (31(4)

(3]| (3) (4)(5](0)

(41| (4] (5)00]) (1) (2)
(511 (5] (0] (1) (2)(3) (4]
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P Algebra - Part 9
(6:°> (H,*)

Preserving
the structure?

o binary operation X binary operation

and identity and all inverses and identity and all inverses

Definition: (61°>,(H/*> groups. A map (lo: G —> H s called

a group homomorphism if (f(Ao L) = Kf(a) '3 L()(l,) for all a,L e 6.

Example: (6 )——(]R +) (H,*) :(‘R\io‘k : )
\{J:G% H

X+Yy

=> c|o(x+y) =e
¢(x) - 9(y) = e e

X
X — e

Properties: A group homomorphism saftisfies:

(1) L(;(eé) = €y (identity is sent to identity)

l()(aﬁ) = k((a)_1 for all ae (.

Proofs (0 (eg) = ylegee.) = () * y(eo)

= e = Lr(ea *tr(ea = kp(e& CICARYICH)
= (40 % 9(e0) £ 4(e0) = (el

(2) ey = L(J(EG) = L(’(d‘o o\) = L?(a")* L{)(o\)

inverse unique

= \?(‘0 ¢ ") 0
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cat Algebra - Part 10

(6,0) grou?y

(Hio) subgroup

Example: (R/“L) — (Z, +>

subgroup

Definition: et (6,0) be a group. A non-emply subset He G is called

a subgroup of Goif (H,°> forms a group.

We Se’f a 3youp homomor?hism: \r: H E— G (f(o\o l:)
J

= ¢(@) o (k)

X —> X

= Lf/geH) = Cg

) @
Proposition: Let (6,o> be a group and H<= (G be a hon-empty subset.

Then: H is a subgroup of G (> aob el foral abeH &)

o'eH  for all acH (%)

Proof. (:>) Assume (H,°> form a group.
—> o: |-|>«|-| — H is well-definhed! => (k) \/

Neutral element in H is the same as the neutral element in 6 :

inverses are unique

e=xXex = xX'eH foral xeH => (**)\/
(<:) Assume (%), (k+). Since aob € H for all a,be |—|,

= 0 HxH — H is well-defined!

(associa‘tiva! (G is a 3roup>

Gk )

- *) -
Choose aeH = 0\1€H (:> aoal = e e}

:> (H,0> is a group []



Example: (a) ) : S b
( (6 o) grou?p { g is subgroup of G } trivial subgroups

G s subgroup of G
(b) (Z,+) growp , meN. mZ = zm-k | kQZE c 7

=> (m%, -I-) subgroup of (Z, +)

Recall: Z‘/mz is a group ~N—7>> geheral construction G/H
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A\gebra - Part 11

Recall subgroups: (6,0) ~~> Hel } (H,o> group ~> H subgrou?p 01‘6
Cs e

Proposition: (6,0) group, H = G hon-empty subset.

HL G & { asb el  forall abeh

o'eH for all acH

Klein four-group: 4 3 u 3
e
T
1 2
rotating horlZo;tal\ vertical
by 180° A ref\eo‘hon reflection
2 1 3 4 1 )
3 4 2 1 4 3

7~ ——> associativity \/

O o— S m|o
AN\ oS [N
a—0D0O |
S MO o|o
Moo n|DO

(G,O) with G = {G,G,L,C} and o satfisfying the table above

defines the so-called Klein four group, called k‘r-




ProPosition:

Let (6,0) be a group with ord((G) < 00, H< G ve a hon-empty subset.

Then: HLG & aohb € H for all a,be H

Proof: (-_—>) v (<:) (H/ o) semigroup of finite order and

both cancellation properties hold
OoX = om)/ = X )/
Xob = yoL = x=y
Part 6
:> (H, °> is a group []
Example: G = {e,o\,l), c} Klein four-group.

subgroups: ]—-L:ie'g ) HL: {e_,o\k p H3 = ie,l)‘g / Htf: ie,c@ / HS':G

~——> we have 5 subgroups
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Algebra - Part 12
(6.°)

Preimage of

V under kp

¢'V]

{
(|0(AO l:) = Lf’(a) K \P(l:) Y[M—_l image of A

uhder V

Proposition: (6/°>,(H/*> grou?ps, LlD: G — H group homomorphism.

If MQG is a subgroup of G and Y& H is a subgroup of H )
then: (a) (‘0[&] < H isa subgroup of H

(b) LPT_V] <G is a subgroup of G

Proof: (a) Take a,EG (([u] < H . We find x,yé:\A with k((x): a, lf()’):L,

Then: axk = LIJ(X) * \r(y) = (f()f/:_)Q E k([lA—J

e U (subgrou?!)

Part 10

= (Y)[U\] , *}

subgrou?p

=96 = () eyl

) (subgroup!)

(b) Take X,Y€ tF‘[V__l, We find a,b€ V with Lf(X): a, ?()’):L,

Then: L{l(}(oy) = \P(x)* Y(y) = 4 X L 6,\/ e
= Ky € §'[v] §'[V]

Lf(x ) = \P(x =o' eV

part 10

= X €'-f|__V__l > ‘H__V__\ >sub3rou17 O




Special cases: (.lD: G — H grou?p homomorPhism.

Lr"1|:i€}] p— Ker(L{)) kerhel of v 6

(im(¢) inage of 1y )

(FI:G] =: Ran(Lr) range of \.f) Q 1\
| )

Ker( Lf) Ran(y

Example: (_f), # —> {e, o\l

/N> grouP homomorphism!

k —> ii I |<k eo\;e: lp(k+w\) = (K)o y(m)

Ker(tf) = {even numbers} = L% subgrou?!
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Algebra - Part 13

G G
m\
group homomorphism
(o) =
Subgroup group endomorphism
Important case: inner automorphisms : L[)! G—> G group homomorphism that
1/ endomorphism cah be written as Kf)(X> =9 X9
\f’ is represented , + ,

isomorphism

by an inner element \

bijective and
homomorphism in
both directions

We already khow: [\ < G subgrou?p :> (([M] ) '-(31‘__[‘ subgroups

Definition:  Two subgroups U\,V <G are called conjugate subgroups

if there is an element 36 G : V :juj_1 - i\a Ukj1 ‘ WE M}

AN \”Dﬂ for 9: G—>6
HORNEN]

Remember: This defines an equivalence relation on the set of subgroups of G.

Hence: OOO@OO —> [_U] i ijuj‘l ‘ 366}
QO0000 N
OOOQOO equivalence class

Trivial for abelian groups: le3‘1 = Eujﬂq ‘ WE ME = (A



rotation
Example:  Symmetric grou?p S /<®\/_\/ /<®\
S ie o,b, o, ab, Ba (3

Uzic,ti

r flection

RN

cohjugate subgroups

NN O\MGI1 :26,9’&5} Zie,l-;a}

U@ = e, Bo\l = Je, ab]

abU(aby! = Je ,qt,g(ab)} je b

ba U (ba) = Je ,Lavggaf; = Je, ab}
LULY = clle’ =TA



Alaebra - Part 14

rotation
Recall: Symmetric group S3 A /;\’ /<®\
/ 3 /1 2 (3
reflection | b
is generated by the
two elements a,b

Definition: Let G be a group and S & G be a subset.

sy = Nu 6

e G subgroup
with SES A

We say: S generates the subgroup <S>

Proposition. Intersection of subgroups is also a subgrou?.

Proof:  Assume: (G group , Uy & G subgroups for all 3eJ, U= Q]u‘j'
ic

Obvious: € € ,(\A/ 4
Take a,l:ea = a,l:eud for all ;)eJ
Mdsubgrou?

= gbelly and d'elly forall jel

= aEC—lu and 5\1(—1u

Fact: If S+#¢g and sh= 25'1 | seS} , then:

(55 = frocnc e, e
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Example: Symmetric group 53 ;o S= iow L} ! 3_1 = {41, L}

~> ob, ba, bb=¢,.. just six elements
S5 = <“' L>

Definition. A group G is called cyclic if there is element 366

such that <3> = G.

In other words: (G = i Sk | ng} with jo := identity element in G




