ON STEADY

The Bright Side of Mathematics

$$(S, \circ)$$
 semigroup $\longrightarrow e \in S$ with $e \circ a = a = a \circ e$

<u>Definition</u>: An element $e \in S$ is called

- left neutral (=a left identity) $e \circ a = a$ for all $a \in S$
- <u>right neutral</u> (=a right identity) $a \circ e = a$ for all $a \in S$
- <u>neutral</u> (=an identity) $e \circ a = a = a \circ e$ for all $a \in S$

Example: $S = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \mid x, y \in \mathbb{R} \right\}$ with \circ given by the matrix multiplication $(S, \circ) \quad \text{semigroup} \\ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \implies \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{left neutral} \\ \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} \neq \begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix} \implies \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \underline{\text{not}} \text{ right neutral}$

Fact: Let $e \in S$ be left neutral and $\tilde{e} \in S$ be right neutral.

$$e \circ a = a \implies e \circ \tilde{e} = \tilde{e}$$

 $b \circ \tilde{e} = b \implies e \circ \tilde{e} = e$
 $b \circ \tilde{e} = b \implies e \circ \tilde{e} = e$

<u>Definition</u>: (S, \circ) semigroup with identity e (<u>the</u> neutral element), $a, b, c \in S$.

