ON STEADY

The Bright Side of Mathematics

Algebra - Part 2

Definition: Let A be a set.
A map F:
$$A \times A \longrightarrow A$$
 is called a binary operation on A.
Instead of $F((a,b))$, we write $a \circ b$ or $a \times b$ or $a F b$
or $a \cdot b$ or $a b$ or $a + b \dots$
juxtaposition
Closure Law: $a \circ b \in A$ for all $a, b \in A$
Example: $A = \{1, 2, 3\}$, $\circ : A \times A \longrightarrow A$ binary operation defined by:
operation table: $\bigcirc 1 & 2 & 3 \\ 1 & 3 & 1 & 2 \\ 2 & 3 & 3 & 1 \\ 3 & 2 & 2 & 2 \end{bmatrix}$
 $(1 \circ 2) \circ 3 = 1 \circ 3 = 2 \\ 1 \circ (2 \circ 3) = 1 \circ 1 = 3$ not equal
 $1 \circ (2 \circ 3) = 1 \circ 1 = 3$

<u>Definition</u>: A pair (S, \circ) where S is a set and \circ is a binary operation on Sis called a <u>semigroup</u> if $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in S$ (<u>associative</u>)

Example: set of functions $\mathcal{F}(\mathbb{R}) = \{ f \mid f: \mathbb{R} \to \mathbb{R} \text{ function} \}$ together with composition $\circ: \mathcal{F}(\mathbb{R}) \times \mathcal{F}(\mathbb{R}) \longrightarrow \mathcal{F}(\mathbb{R}):$ Take $f_1, f_2, f_3 \in \mathcal{F}(\mathbb{R})$ and define $g = f_1 \circ (f_2 \circ f_3) : \mathbb{R} \to \mathbb{R}$ $h = (f_1 \circ f_2) \circ f_3 : \mathbb{R} \to \mathbb{R}$ $g(x) = f_1 \circ (f_2 \circ f_3)(x) = f_1((f_2 \circ f_3)(x)) = f_1(f_2(f_3(x)))$ $h(x) = (f_1 \circ f_2) \circ f_3(x) = (f_1 \circ f_2)(f_3(x)) = f_1(f_2(f_3(x)))$ $\Rightarrow (\mathcal{F}(\mathbb{R}), \circ) \text{ semigroup}$