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Definition:  Let A be a set.

A map [ AxA —= A is called a binary operation on A

Instead of F((%L)), we write aob or axb or aFb

or Ck-l: or O\E or 0\+L

<

juxtaposition

Closure Law: aob € A for all a,beA

Example: A: {1' 2,33 , o Ax A — A binary operation defined by:

operation table: (:A

1 12 3
10l =1
113 1 L not equal!
lel =3
Ll 3 3
Jl 2 v 1

(102)03 =413 =27
1o(103) =11 =3

not egual!

Definition:

A pair (S, O) where S is a set and o is a binary operation on S

is called a semigroup if

ao(boc) = (aob)oc  forall abceS
ANY
“Ooboc

(associative)

Example: Set of functions F(R) :i § | f:R—R funo’rion}
together with composition o : F(R) x F(R) — F(R) :
Take §, .,5,€ F(R) and define g =§,o(f,2f) :R—R
h=($io8)ed R—R
40 = Fro(8o8) () = H{(1o5)6) = H{F.(500)
ho) = (B £)o 8 () = (Be 8)(560) = §,(5.(5,60)
= (F(R), o) seiligranE
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(SJ O) semigroup ~—> 6€.S with @oa = a = aoce

Definition:  An element €€ S is called

o left neutral (=a left identity) oo = a for all ac S

o vight neutral (-a right identity) aoce = a  for all ael

o neufral (=an identity) coo = &a=aoe foral ael

Example: S = i:(); Z) ‘ x,yem} with o given by the matrix multiplication
L‘> (S, O) semigroup

('; g)(z %’) — (’; %) = (1 0) left neutral

0 0

(é 10) (:J 0) - (2 3) % (z i> => (11 g) not right neutral

o

Fact: Let €€ S be left neutral and €€ § be right neutral,
for o\;’é' ~ ~
colo = 4 p— o e = &
for b=e I :> e = g
bo& = E :> e o e = e
Definition: (S, 0) semigroup with identity €  (fhe neutral element) |, a,bce S .
e X€S s called a left inverse of o if Xoa = e
left invertible
e YE S is called a right inverse of L if bo y = ¢
right invertible
e 2€ S s called an inverse of © 20C = € =Co?
K invertible
Example: Functions §:: [O,ﬂ —> [0.1_] ) (J-_([O,{D/ 0) semigroup
Neutral element: id : [0, = [04] , X+>x A
1
~ 1
Right invertible :  { . [o4] = (o] | X+ ¢(x-1) M_>
>
Right inverse of :S'_v: j : [0;1] —> [0,1-_‘ ¢ XK= L\l_x_' v L 1/L
7 v K
> fog=id —
5 0 S £ id Remember:

surjective <{=> right invertible

injective {=> left invertible
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_I_
(S, °) semigroup  ~~——=> peutral element ~—~> group

iInverses

Definition: A pair (G, 0) is called a group if:

(a) (G, 0) semigroup .
(b) There is a left identity eet.

(¢) €Each acG is left invertible, i.e. there exists beG with boa = e .

This implies: A set (G together with a binary operation ois a group if:

(61) a\o(hoc) = (&o B)oc for all a,b,ce (associative)

(GZ) There is a unigue identity eeh: @o0 = &= 0ace
for all ae G

(_(;-3) Each ac G is invertible: dbe( : Lboa = € = aob

]

:—l) (common notation)

Proof: (a) = (61) 4

Let ae G (b) There is a left identity ect.

(¢) €ach ac G is left invertivle, i.e. there exists beG with beoa = e .

(x)

Choose be G
with ba, =e. Then ab = a(eb) L a(ba)b = (ab)(ab). 6
Choose ce (G with < (A(a) = & (by (c))

(b) \/ (kx) \/ S/
= ab =e(ab) =c(ab)(ab) = c(ab) = e = ((,3)
ca=a = @)Y

H\

—> ae = a(ba) = (ab)a
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Grou?: G Tfogether with binary operation o and:

(G1) associativity o\o(l: oc) = (&o b)ec for all a,b,ce (5
(G2) uhique identity eel: eoa =a=ace foral aci

(G3) all inverses exist: Vo\eé dbeG: boa= e =aob

NP

&-1:: l) (common hotation)
Uniqueness of inverses:
(S, o) semigroup with identity ee S, (aoy =€)

If acS is a left invertible with X (xo o = e) and right invertible wi’rhy)L2

then X =Y.

Proof: x:er=X°(0\°)f7=(x°C\>°)’:e°>’:>’ i

angles: a1 G- [} wih ere-e , &= e

(b) Ol& (1N 4
G:ie,o\ el € O~ A = O

Al & €

“ (Z/ +) with identity 0 and inverses 2+ (_3) = 0
-1
(Q\iol J '> with identity 1 and inverses _1(? (_1‘;> iy
((Eh“ , + ) with identity (O °>

0 0

({Ae(]:“”'| detf(A) # 0} , ) with identity (1‘-.1>

General example: Let (S, O) be a semigroup with identity ee€ S.

*

S = ic\es | o is inver’fible}
L
0-\ exists

Then (S*’ o) is a group.

Proof: (1) eoe =¢e :> e € S* with 61 =& :> (62) /

* S -1, —
B oaest = araze o a5t > o/
0o ' =€

associafivity in 5

(3) Q/EGS* = (l;1° (;\1)0(0\0L3) g L;1°((;\1 o o\)ok = e
-

associativity in S e

(aob)o (bod) £ ao(botoa=e

X
= (S ' o) is a well-defined semigroup i
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(S, 03 semigroup. Let's wrife: ab:i= aob

\nem‘ral element + all inverses

group

Fact: Let (G, °) be a group and O\,L,x,yeé . Then:

AX = Ay —> X =Yy (left cancellation property)
Xb = )/l, = X = Yy (right cancellation property)
Proof: X = Xe = x ([, L,-1> — ()( [,) lg_1 :()/L,) L_1 =y ([, L,—1> =y
/

Definition:

heutral element

(S, °) semigroup (or group).

The order of §

Lemma:

Proof:

Proposition:

Proof:

is the humber of elements in S:

IS| =#S S is finite

(929Q)

ord(S) :=
if S is not finite

Let (S, °3 be a semigroup. Then:
(S: °) is grou? <:> V&,L;QS Elx,ye_g: ax = b , )IA=L

(:>) Assume (_S, 0) is a group. For given a,be S, set:

(<:> For given a€ S, there are X,Y€ S with ax = a , ya = a.

e,'.::)/ :
éLeT'S take LGS, Then there is Xe S with oX = b.

>

Let's call el = O\

We get: el = e(a’i‘) = (e,o\)?( =aX = b => € left neutral

For given beS there is YQS such that: ')?’B = e => b lett invertivle

Part 4

= (S, O) is a group O

Let (S, o) be a semigroup with ord(S) < oo, Then:

(S, 07 is grou?p <:> both cancellation properties hold

_—_> X:)/
X =y

ax = ay
XL:yl: =

E=]

For given 0\65, define §A:S'—> S and j«:5—> S by
f X)) = ax

Thenh we have:

For any map 5::5'—> S

§ is injective <> § is surjective

9.(x) = xa. .

both cancellation properties hold

> Vael: fax) = £,(y)

:> X :}/
jq(x) = jq(Y)

\

X

)
~

<’:> VaeS
<::> qus :

Sa and Yo are injective

§, and 9o are surjective

/N
<:> VO\€S= for every be S there are L

X,Y€ S _;o\,(,)() =L and 5&(7) = b
Il

a X

Y&

Lemma

= (S, ) is group O
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rotation rotation rotation

AT OTOT A
Qa Qa Qa
2\ (A 2\ (3 N\ (2 2\ (A
reflection \ b w

(2 -1

b
N\ (3 a = &

b
1 A
a

v

\I

symmetry operations <> permutations of 5_1,2,3} = X

ﬁ 5, ::i X —=>X | bijec’five}

L—> symmeftric group

Exam?ple: L(1> = 3 q(1> =1
L(2> =2 q(l) =3
L(3> =1 A(S\) =1
= (S“'"O'\)/

composition of maps

ﬁ ﬁ We geft: ( - L)(1> = | ( L “>(1‘) )
Lﬁﬁé Q(,Zﬁé ( a L)(?') =3 ( 1 q)(Z) = 1
L&‘ﬁ <°~ L)(Z’):Q- J (I. q)(Z):S

A
:> hot commutative!

Definition: A group (G, O) (or semigroup) is called abelian or commutative

if aob = boa for all o\,LeG_

Examples: (Z, +7 , (@\50}, > ) (R, +) , (C\SM/) are abelian.

Geheral example: G = ia/ b, e,k

o o|o
s[]2.s

b

L]
l-;L
b

o ool

group with three elements

Ast case: 5\1:L;,L=<\ — aob = e

~> abeliah grou
L)O . = & 3 P

2nd case: 0_\1:0\ /lj:{? => (Loa>o(0\0l>>: L0§0l>

=e
= e
1
:> (oxot:> = (Eo 0L>
74
oo b ~—=>> abelian group
Noh-abeliah group: Symmetric group Sa i |53| =3l =

™~
Il order 6
Dihedral group D, ~
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modulus calculation: 13 - 12 = 1
modulus XNmY &> There is <1eZ
v S X—y = g mn
4 -112=0 )

X = Y (mod )

Integers modulo m: Zm ) Z‘/MZ ) Z/m ) Z/Nm

7 = i[o], o ...,l__m—ﬂ} | me N

for example with im =11 : D] = il, \4 ,24 / 38,-..,}
—401 _22/-.-

define addition: D«] + Dﬂ = D«+ []Vwell—deﬁned

(k] + [-k) = [o] o dentity
Rg\\~——— inverse

:> (Zm ' +) abelian group of order m

Example: ( Z, +) 0 (0] =§0,2,%,.,-2,-¢,..% w+] t[m] 31
[1] 23-1,3,5,},-..,-1,-3,...} (1 (1 EO:I

(ZG , +) . [o) = {o,e,n,...,-é,-n,...}
+ 101 (1) (2] (3) (4] (5]
(1], [z}, (31, (4], [s)

(01| (0] (1] (2] (3] (4] (5]
(1|11 [2)

(2] (2] (31(4)

(3]| (3) (4)(5](0)

(4] (4] (5)(0) (1) (2]

(511 (5] (0] (1) (2)(3) (4)
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Preserving
the structure?

o binary operation X binary operation

and identity and all inverses and identity and all inverses

Definition: (610),0—],*) groups. A map Lf: G —> H s called

a group homomorphism if (f(Ao l:) = L{(a\) x k{)(l,) for all G\IL e G,

Example: (6/0):(fR,+), (H,*):(R\io’k/>

Properties: A group homomorphism saftisfies:

() L()(eé) = €y (identity is sent to identity)

2) ({;(0:1) = L((a)_1 for all o€ (.

Proot: () L(’(ee) = L(’(ecfec,) = LP(EG)*LP(%)

_1 -
= ey = ‘F(ee) * Ll’(ec,) = Ll’(ec,f* (Ll’(ee) x ‘I’(ec,)>

= (9(e) = 9(e)) = §(e0) = p(eo)

—~

@ ey = 4(e) = g(a'ea) = ¢l x (o)
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(6,0) grou?p

(Hi0) subgroup

Example: (R/'*) e (z/ +>

subgroup

Definition: Let (6,0> be a group. A non-emply subset HeG s called

a subgroup of 6ok (H,°> forms a group.

We 331’ a Syoup homomor?hism: Y: H E— G (f(o‘° l:)
J

= ¢(a) o (k)

X —> X

= ({’lgeH) = &g

) @
Proposition: Let (6,o> be a group and H<= G ve a hon-empty subset.

Then: H is a subgroup of G <{=> aob el foral abeH &)

a'eH for all acH (xx)

Proof: (:>) ASsume (H/°> form a 3'0UP.
—=> o: |-|><|-| — H is well-definhed! => (k) /

Neutral element in H is the same as the neutral element in 6 :

inverses are unique

> X'eH foral xeH => (;k)lt)/

€ = )(_40 X
(<:) Assume (x),(+). Since aocb € H for all a,be H )

HxH — H is well-defined!

> o .
(associa’five! (G is a 3rouP>

Gr) . -
Choose acH = a\1€ H (;)> aoa = e e€H
:> (H,0> is a group []

Example: (a . [
(a) (élo) grou?p {c’g is subgroup of G} trivial subgroups

G is subgroup of G
(b) (zl+) group , me IN . mé& := {‘Imk l kQZK c 7

— (mZ, -I-) subgroup of (Z,‘*‘)

Recall: Z/Vnz is a group ~N—7> geheral construction G/H
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Recall subgroups: (6,0) ~ Helb } (H,o> group ~> H subgrou? ofé
> HLG

ProPosition: (6,0) group, H< G non-empty subset.

H< G & { asbel forall abeh

0:1€H for all acH

Kleih four-group: 4 3 - u <
A ——S
1 2
roTaTiny ho,,zoh vertical
by 180° a re{-‘lec’ﬂon reflection

2 1 3

2 4 2 l} 4 3

7~ ——> associativity J

N o— © nm|o
N\ oS (n
DO % |%
S MO o|o
(O n|D

(G,O) with G = {e,a,[n CE and o satisfying the table above

defines the so-called Kleih four group, called klr-

Proposition: Let (6,o> be a group with ord(G) < o9, H < G be a non-empty subset.

Then: H<L G <& aobeHl foral abeH

Proof: (-_—>) v <<:) (H/ o) semigroup of finite order and

both cancellation properties hold

OoX = o}/ ___ X = )/
Xol) = >/o[;, => X = )/
Part 6

:> (H, °> is a grou?p

[S)

Example: G = {e,a\,l», c} Klein four-group.

subgroups: ]—-L:ie} ’ HL:{e_,oﬂS , |—)3 = ie_,l-,’g , HH: ie,cfg , Hszé

~—> we have 5 subgroups
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@

Preimage of

V unhder Lp

¢'[V]

!
(f(o\o b) = @) x (k) Y)[Uq image of |

uhder Y

Proposition: (6/°>4(H/ *) groups, ﬁo: G — H group homomorphism.

If W& is a subgroup of G and V& H is a subgroup of H,
then: (([\A__l < H is a subgroup of H

(b) t{;1EV] <( is a subgroup of G

Proof: (a) Take a,b€ \o[u__l < H. We find X ye\A with t()(X): o, \f)()’):L,

Then: gxb = @(x) * p(y) = L()(X oy) € Yl

c \A (subgroup!)

pPart 10

=> (l([u] ) *>

subgrou?p

=96 = y(x) e ylul

e\ (subgrou?p!)

(b) Take X,Y€ LF'[_V__\, We find ao,b€ V with L()(X): a, lf()’):L,

Then:  y(xey) = P(=)* Y)(y) =axbeV >
= xey € §'[V] PV

\f(x") = p(x) —1 =aeV

part 10

= X 'e Lf [V__\ => ('f [V__l > subgroup [

SpPecial cases: LlD: G — H group homomorPhism.

Lr [ie}] — KeY(th) kernel of v G H

LF[G] =: Rah(L{J) range of \f) Q 1\
. ( ]

(m(¢) mage of )

Ker(L{)) Rah(tr
Example: Lf); #r — {e,o\k
y /N2> group homomorphism!
e | evenh _ o vl
k'_>£a, < e p(k+m) = G)e ()

KeY(Lf’) = {even numbers} = L% subgrou?!
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G G
m\
group homomorphism
(%) =
subgroup group endomorphism
Important case: inner automorphisms : LP: G—> G group homomorphism that
—

/ be writt (X)=g9x g
¢ - cah be written as Lf) = j j
IS rePresente

by an inner element \

bijective and
(homomor?hism in

both directions

We already khow: [ < G subgrou?p :> Y[M]J Lfil__u__\ subgroups

Definition: Two subgroups M,V < G are called conjugate subgroups

if There is an element jé G V :ju3_1 - iﬁ U\j_1 ‘ UE M}

N ?[U\] for p: G—>6
¢0d = 9x g’

Remember: This defines an equivalence relation on the set of subgroups of G.

Henhce: OOO@OO —> [_U\l P — iju3_1 ‘ 366}
OO0 00O o
OOOOOO equivalence class

Trivial for abelian groups: jU\51 = Eu\ 3 3_1 ‘ WE MS =

rotation
Example:  Symmetric grou? S /<®\/'\/ /<®\
S, = ie o,b, o, ab, Bm /3

eflection

e N : &m o

cohjugate subgrou?s

U= fet] T st 2 e, abat} = e bl

ba

, gfarl&ﬂ = {e,at,‘g

abU(ab)" = e, qhée(ab)} - e, ba]

o U (ba) = Je, bab(ta) = e, abf
LULY = elle’ :E\

or M(o\L)_1 = ic
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rotation
Recall: Symmetric group 53 /@\ N /<é>\
/ 2 (1 2 (3
reflection b
is generated by the
two elements a,b

Definition: Let G be a group and S < G be a subset.

(s> = () °

c@ subgrou?
with S&

We say: S generates the subgroup <S>

Proposition. Intersection of subgroups is also a subgrou?.

?VOO‘F: Assume. G Syou? ) :) _C_:_ G SUbSYOUPS ‘FOI' a" :)GJ} e q J.
JE

Obvious: € € v

Take a,be (Il => a,belly for all jel
Jsubgroup -4 '
—> ab ; and @ 5 for all JeJ
:> (LE ahd 0_\1 D

Fact: 1f S+ ¢ and = i.{‘ | seS} . then:

<S> — E_CH“L”'Q"({G ‘hélN J 0‘1:--"“"65“5‘1}

ExamPle: Symmetric group 53 . S= io" L} ! 8_1 = i‘li, L}

~> ob, ba, bb=¢€,.. just six elements
5 = {a, >

Definition. A group G is called cyclic if there is element 366

such that <3> = G.

Ih other words: G = 5_3“ ‘ ng} with jo ;= identity element in G




