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Algebra - Part 1

Start Learning Mathematics

 Algebra
Real Analysis Linear Algebra

- groups
- rings
- fields

group:

ring:

field:
at most 5 solutions

solutions cannot be expressed
with combinations of roots

Galois theory
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Algebra - Part 2

Definition: Let     be a set. 

A map is called a binary operation on

Instead of , we write or or

or oror

juxtaposition

Closure Law: for all

Example: binary operation defined by:

operation table:

not equal!

not equal!

Definition: A pair where     is a set and   is a binary operation on 

is called a semigroup if

for all (associative)



Example: Set of functions function

together with composition

Take and define

semigroup
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semigroup with

Definition: An element          is called

left neutral (=a left identity) for all

right neutral (=a right identity) for all

neutral (=an identity) for all

Example: with given by the matrix multiplication

semigroup

left neutral

not right neutral

Fact: Let        be left neutral and        be right neutral.
for

for

Definition: semigroup with identity (the neutral element)

is called a left inverse of      if

is called a right inverse of      if

is called an inverse of       

left invertible

right invertible

invertible



Example: Functions semigroup

Neutral element id

Right invertible

Right inverse of

id

id Remember:
surjective right invertible

injective left invertible
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semigroup neutral element
inverses

group

Definition: A pair          is called a group if:

(a) semigroup

(b) There is a left identity

(c) Each is left invertible, i.e. there exists       with

This implies: A set     together with a binary operation   is a group if:

for all (associative)

There is a unique identity
for all

Each        is invertible: 

(common notation)



Proof: (a)

Let   (b) There is a left identity

(c) Each is left invertible, i.e. there exists       with

Choose

with Then
(b)

Choose with (by    )(c)

(b)
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Algebra - Part 5

Group: together with binary operation    and:

(G1) associativity for all

(G2) unique identity for all

(G3) all inverses exist:

Uniqueness of inverses:
(common notation)

semigroup with identity

If        is a left invertible with                  and right invertible with

then

Proof:

Examples: (a) with

(b)

(c)
with identity and inverses

with identity and inverses

with identity

det(  ) with identity



General example: semigroup with identityLet           be a

is invertible

exists

Then             is a group.

Proof: (1) with (G2)

(2) (G3)

(3)
associativity in

associativity in

is a well-defined semigroup
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semigroup.  Let's write:

group

neutral element + all inverses

Fact: Let         be a group and Then:

(left cancellation property)

(right cancellation property)

Proof:

neutral element

Definition: semigroup (or group).

The order of     is the number of elements in 

ord(  )
if    is finite

if    is not finite

Lemma: Let          be a semigroup. Then:

is group

Proof: Assume is a group For given set:

For given        , there are         with

Let's call :

Let's take Then there is with

We get: left neutral

For given there is such that: left invertible

part 4

is a group



Proposition: Let          be a semigroup with ord(  ) Then:

is group both cancellation properties hold

Proof: For any map

is injective is surjective

For given define and by

Then we have: both cancellation properties hold

and are injective

and are surjective

for every there are

and

Lemma

is group
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Group:

1

2

3

rotation

1

2 3

rotation

3

1 2

rotation

1

2

3

reflection

2

1 3

symmetry operations permutations of 1 32

bijective

symmetric group

Example: 1

2

3

2

3

1

composition of maps

1

2

3

1

2

3

1

2

3



We get: 1
1

2

3

2

1 3

3

2 1

2 3

23

1

2

3

1

2 3

1

2

3

2

1

3
1

3 2 not commutative!

Definition: A group (or semigroup) is called abelian or commutative

if for all

Examples: are abelian.

General example:

group with three elements

1st case:
abelian group

2nd case:

abelian group

Non-abelian group: Symmetric group

Dihedral group
order 6
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modulus calculation: 12

modulus There is

(mod   )

Integers modulo m:

for example with

define addition: well-defined

identity

inverse

abelian group of order

Example:
[0]
[1]

[0] [1]

[1]
[1]

[0]
[1]
[2]
[3]
[4]
[5]

[0] [1] [2] [3] [4] [5]

[0] [1] [2] [3] [4] [5]

[2]
[3]
[4]
[5]

[1] [2]
[4]

[0]
[2]

[4]

[3]
[4]
[5]
[0]

[5]
[0]
[1]

[1]
[2] [3]
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binary operation

and identity and all inverses

binary operation

and identity and all inverses

preserving
the structure?

Definition: groups.  A map                  is called

a group homomorphism if for all

Example:

Properties: A group homomorphism satisfies:

(1) (identity is sent to identity)

(2) for all

Proof: (1)

(2)

inverse unique
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group

subgroup

Example:

subgroup

Definition: Let        be a group. A non-empty subset          is called

a subgroup of     if          forms a group.

We get a group homomorphism:

Proposition: Let        be a group and         be a non-empty subset.

Then: is a subgroup of for all

for all

Proof: Assume         form a group.

is well-defined!

Neutral element in    is the same as the neutral element in 
inverses are unique

for all

Assume Since for all

is well-defined!

associative! is a group

Choose

is a group



Example: group.(a) is subgroup of

is subgroup of
trivial subgroups

(b)
group

subgroup of

Recall: is a group general construction
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Recall subgroups: group subgroup of

Proposition:           group,        non-empty subset.

for all

for all

Klein four-group:

1 2

34

1 2

34

rotating 
by 180°

12

3 4

horizontal
reflection

12

3 4

vertical
reflection

1 2

34

associativity

with and    satisfying the table above

defines the so-called Klein four group   called



Proposition: Let        be a group with ord(  )          be a non-empty subset.

Then: for all

Proof: semigroup of finite order and

both cancellation properties hold

part 6

is a group

Example: Klein four-group.

subgroups:

we have 5 subgroups
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group homomorphism
subgroup

image of 
under 

subgroup

preimage of 
   under 

Proposition: groups,                  group homomorphism.

If         is a subgroup of    and         is a subgroup of

then: (a) is a subgroup of 

(b) is a subgroup of 

Proof: (a) Take We find with

Then:

(subgroup!)

(subgroup!)

part 10

subgroup

(b) Take We find with

Then:

part 10

subgroup



Special cases: group homomorphism.

Ker(  ) kernel of

Ran(  ) range of

im(  ) image of
Ker(  ) Ran(  )

Example:

even

odd

group homomorphism!

Ker(  ) even numbers subgroup!



The Bright Side of Mathematics - https://tbsom.de/s/alg

Algebra - Part 13

group homomorphism

group endomorphismsubgroup

Important case: inner automorphisms group homomorphism that

can be written asendomorphism

isomorphism

  bijective and
homomorphism in 
 both directions

    is represented
by an inner element

We already know: subgroup subgroups

Definition: Two subgroups               are called conjugate subgroups

if there is an element

for

Remember: This defines an equivalence relation on the set of subgroups of

Hence:

Trivial for abelian groups:

equivalence class



Example: Symmetric group

1

2

3

rotation

1

2 3

reflection
2

1 3

conjugate subgroups

reflection

1

3 2

3

2 1
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Recall: Symmetric group

1

2

3

rotation

1

2 3

reflection
2

1 3

is generated by the
two elements

Definition: Let     be a group and            be a subset.

subgroup

with

We say: generates the subgroup

Proposition:  Intersection of subgroups is also a subgroup.

Proof: Assume: group subgroups for all

Obvious:

Take for all

subgroup

and for all

and

Fact: If         and then:



Example: Symmetric group

just six elements

Definition: A group      is called cyclic if there is element

such that

In other words: with identity element in
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Cyclic group: for a particular

with identity element in

always abelian:

Examples: (a)

(b) together with addition

We know:

 times

cyclic group!

(c) subgroups of

also cyclic:

(d) is a finite abelian group!

addition

cyclic!

Important Result: For each natural number          or          , there is

a cyclic group of order


