ON STEADY

The Bright Side of Mathematics

Algebra - Part 15

Cyclic group:
$$G = \langle g \rangle$$
 for a particular $g \in G$

$$= \{ g^k \mid k \in \mathbb{Z} \} \text{ with } g^0 := \text{identity element in } G$$

$$\Rightarrow \text{always abelian:} \quad g^k g^m = g \cdot g = g^m g^k$$

Examples: (a)
$$G = \{e\}$$
, $G = \langle e \rangle$ $(G = \langle \phi \rangle)$

(b)
$$\mathbb{Z} = \{ ..., -2, -1, 0, 1, 2, ... \}$$
 together with addition + We know: $\frac{-1}{-5} \cdot \frac{-1}{4} \cdot \frac{-1}{3} \cdot \frac{-1}{2} \cdot \frac{-1}{4} \cdot \frac{-1}{4} \cdot \frac{+1}{4} \cdot \frac{+1}{4}$

(c) subgroups of
$$(\mathbb{Z}, +)$$
: $m \in \mathbb{N}$

$$m\mathbb{Z} := \left\{ m \cdot k \mid k \in \mathbb{Z} \right\} \subseteq \mathbb{Z} \qquad , \qquad 3\mathbb{Z} = \left\{ \dots, -6, -3, 0, 3, 6, \dots \right\}$$
also cyclic: $m\mathbb{Z} = \left\langle m \right\rangle$

(d)
$$\mathbb{Z}/_{m}\mathbb{Z}$$
 is a finite abelian group! $\mathbb{Z}/_{3\mathbb{Z}} = \{[0], [1], [2]\}$

$$\Rightarrow \text{ addition } [k] + [1] = [k+1]$$

$$\mathbb{Z}/_{m}\mathbb{Z} = \langle [1] \rangle \text{ cyclic!}$$

Important Result: For each natural number $m \in \mathbb{N}$ or $m = \infty$, there is a cyclic group of order m.