

Algebra - Part 14

Recall: Symmetric group S_3

is generated by the two elements a,b

Let G be a group and $S \subseteq G$ be a subset. Definition:

We say: S generates the subgroup $\langle S \rangle$.

Proposition: Intersection of subgroups is also a subgroup.

Assume: G group, $U_j \subseteq G$ subgroups for all $j \in J$, $\widetilde{U} := \bigcap_{i \in J} U_j$. Proof:

Obvious: e ∈ U ✓

Take $a,b \in \widetilde{U} \implies a,b \in U_j$ for all $j \in J$ $\stackrel{\text{U}_{j} \text{ subgroup}}{\Longrightarrow}$ $ab \in U_{j}$ and $\bar{a}^{1} \in U_{j}$ for all $j \in J$ \Longrightarrow $ab \in \widetilde{U}$ and $\bar{a}^1 \in \widetilde{U}$

Fact: If $S \neq \emptyset$ and $S^{-1} := \{ s^{-1} \mid s \in S \}$, then: $\langle S \rangle = \left\{ a_1 a_2 \cdots a_n \in G \mid n \in \mathbb{N}, a_1, \dots, a_n \in S \cup S^1 \right\}$ Example: Symmetric group S_3 : $S = \{a,b\}$, $S^{-1} = \{a^2,b\}$ \Rightarrow ab, ba, bb = e, ... just six elements $S_3 = \langle a,b \rangle$

<u>Definition:</u> A group G is called <u>cyclic</u> if there is element $g \in G$ such that $\langle g \rangle = G$.

In other words: $G = \{g^k \mid k \in \mathbb{Z}\}$ with $g^0 := identity element in <math>G$