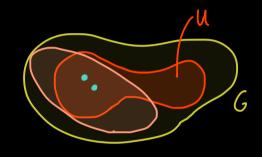


Algebra - Part 14

is generated by the two elements a,b

<u>Definition:</u> Let G be a group and $S \subseteq G$ be a subset.



We say: S generates the subgroup $\langle S \rangle$.

<u>Proposition:</u> Intersection of subgroups is also a subgroup.

<u>Proof:</u> Assume: G group, $U_j \subseteq G$ subgroups for all $j \in J$, $\widetilde{U} := \bigcap_{j \in J} U_j$.

Obvious: e ∈ U ✓

Take $a,b \in \widetilde{U} \implies a,b \in U_j$ for all $j \in J$ $\underset{ab \in U_j}{U_j \text{ subgroup}} \text{ ab } \in U_j \text{ and } \bar{a}^1 \in U_j \text{ for all } j \in J$ $\implies ab \in \widetilde{U} \text{ and } \bar{a}^1 \in \widetilde{U}$

 Example: Symmetric group S_3 : $S = \{a,b\}$, $S^1 = \{a^2,b\}$ $\Rightarrow ab,ba,bb = e,...$ just six elements $S_3 = \langle a,b \rangle$

Definition: A group G is called <u>cyclic</u> if there is element $g \in G$ such that $\langle g \rangle = G$.

In other words: $G = \{g^k \mid k \in \mathbb{Z}\}$ with $g^0 := identity element in <math>G$