

$$c \mid c \mid b \mid a \mid e$$

(G, \circ) with $G = \{e, a, b, c\}$ and \circ satisfying the table above

defines the so-called Klein four group, called K_4 .

Proposition: Let (G, \circ) be a group with $ord(G) < \infty$, $H \subseteq G$ be a non-empty subset.

hen:
$$H \leq G \iff a \circ b \in H$$
 for all $a, b \in H$

<u>Proof:</u> $(\Longrightarrow) \checkmark$ (\Leftarrow) (\exists) (\exists) semigroup of finite order and both cancellation properties hold

Example: $G = \{e, a, b, c\}$ Klein four-group. subgroups: $H_1 = \{e\}$, $H_2 = \{e, a\}$, $H_3 = \{e, b\}$, $H_4 = \{e, c\}$, $H_5 = G$ \longrightarrow we have 5 subgroups