ON STEADY

The Bright Side of Mathematics

<u>Definition</u>: Let (G, \circ) be a group. A non-empty subset $H \subseteq G$ is called a subgroup of G if (H, \circ) forms a group.

We get a group homomorphism: $\begin{aligned}
\varphi: H \longrightarrow G \\
\chi \longmapsto \chi, \quad \varphi(a \circ b) &= \varphi(a) \circ \varphi(b) \\
&\Rightarrow \qquad \varphi(e_{H}) &= e_{G} \\
\overset{"}{e_{H}} \\
\end{aligned}$ Proposition: Let (G, \circ) be a group and $H \subseteq G$ be a non-empty subset. Then: H is a subgroup of $G \iff \begin{cases} a \circ b \in H & \text{for all } a, b \in H \\ a^{-1} \in H & \text{for all } a \in H \end{cases}$ (*) Proof: (-) Assume $(H \circ)$ form a group

Proof. (
$$\Longrightarrow$$
) Assume (H,o) form a group.
 $\Rightarrow \circ: H \times H \rightarrow H$ is well-defined! $\Rightarrow (*) \checkmark$
Neutral element in H is the same as the neutral element in G:
 $e = x^{1} \circ x \xrightarrow{\text{inverses are unique}} x^{1} \in H$ for all $x \in H \Rightarrow (**) \checkmark$
(\Leftarrow) Assume (*), (**). Since $a \circ b \in H$ for all $a, b \in H$,
 $associative!$ (G is a group)
Choose $a \in H \xrightarrow{\text{(**)}} a^{1} \in H \xrightarrow{\text{(*)}} a \circ a^{1} = e \in H$
 \Rightarrow (H,o) is a group

Example: (a)
$$(G, \circ)$$
 group. $\{e\}$ is subgroup of G trivial subgroups G is subgroup of G

(b)
$$(\mathbb{Z}, +)$$
 group, $m \in \mathbb{N}$. $m \mathbb{Z} := \{ m \cdot k \mid k \in \mathbb{Z} \} \subseteq \mathbb{Z}$
 $\implies (m \mathbb{Z}, +)$ subgroup of $(\mathbb{Z}, +)$

Recall: $\mathbb{Z}_{m\mathbb{Z}}$ is a group \longrightarrow general construction G_{H}