ON STEADY

The Bright Side of Mathematics

(S, °) semigroup. Let's write:
$$ab := a \circ b$$

neutral element + all inverses
group

Fact: Let
$$(G, \circ)$$
 be a group and $a, b, x, \gamma \in G$. Then:

 $a_X = a_Y \implies X = Y$ (left cancellation property) $xb = yb \implies X = Y$ (right cancellation property)

Proof:
$$X = \underset{j}{\times} e = \underset{k}{\times} (b \ b^{-1}) = (x \ b) \ b^{-1} = (y \ b) \ b^{-1} = y \ (b \ b^{-1}) = y$$

neutral element

Lemma: Let $(5, \circ)$ be a semigroup. Then:

 (S, \circ) is group $\langle \Longrightarrow \forall a, b \in S \exists x, y \in S : ax = b, ya = b$

Proof: (
$$\Rightarrow$$
) Assume (S, \circ) is a group. For given $a, b \in S$, set:
 $X = \overline{a}^{1}b$, $\gamma = b\overline{a}^{1}$
(\Leftarrow) For given $a \in S$, there are $x, \gamma \in S$ with $ax = a$, $\gamma a = a$.
Let's call $e := \gamma$: $ea = a$
Let's take $b \in S$. Then there is $\widetilde{x} \in S$ with $a\widetilde{x} = b$.
We get: $eb = e(a\widetilde{x}) = (ea)\widetilde{x} = a\widetilde{x} = b \Rightarrow e$ left neutral
For given $b \in S$ there is $\widetilde{\gamma} \in S$ such that: $\widetilde{\gamma} b = e \Rightarrow b$ left invertible
 $\xrightarrow{part f} (S, \circ)$ is a group

<u>Proposition</u>: Let (S, \circ) be a semigroup with ord $(S) < \infty$. Then:

Proof:

$$(S, \circ)$$
 is group \iff both cancellation properties hold
 $\begin{pmatrix} ax = ay \implies x = y \\ xb = yb \implies x = y \end{pmatrix}$
For any map $f: S \longrightarrow S$:

$$\begin{aligned} f \text{ is injective } & \Leftrightarrow & f \text{ is surjective} \\ \hline \vdots & \vdots \\ \hline \vdots$$

Then we have: both cancellation properties hold

 $\iff \forall a \in S: \quad f_a \text{ and } g_a \text{ are injective}$