The Bright Side of Mathematics

The following pages cover the whole Algebra course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: [https://tbsom.de/support](https://thebrightsideofmathematics.com/support)

Have fun learning mathematics!

1

Algebra - Part 2

Definition: Let be a set. A map is called a binary operation on Instead of , we write or or or or or juxtaposition Closure Law: for all Example: binary operation defined by: operation table: not equal! not equal! Definition: A pair where is a set and is a binary operation on is called a semigroup if for all (associative)

Example: Set of functions $\mathcal{F}(\mathbb{R}) = \left\{ \int f : \mathbb{R} \to \mathbb{R} \text{ function} \right\}$ together with composition $o: J(R) \times J(R) \longrightarrow J(R)$: Take $f_1, f_2, f_3 \in \mathcal{F}(\mathbb{R})$ and define $g = f_1 \circ (f_2 \circ f_3) : \mathbb{R} \longrightarrow \mathbb{R}$ $h = (f_1 \circ f_2) \circ f_1 : \mathbb{R} \longrightarrow \mathbb{R}$ $g(x) = f_1 \circ (f_2 \circ f_3)(x) = f_1((f_2 \circ f_3)(x)) = f_1(f_2(f_3(x)))$ $h(x) = ((\int_1 \circ f_z) \circ f_z)(x) = (\int_1 \circ f_z) (\int_2(x)) = \int_1 (\int_2 (\int_2(x)))$ \implies $(J(R), o)$ semigroup

Algebra - Part 3

$$
(S, \circ)
$$
 semigroup \sim $e \in S$ with $e \circ a = a = a \circ e$

 $Definition:$ An element $e \in S$ is called **e** left neutral (=a left identity) $e \circ a = a$ for all $a \in S$ $right$ neutral (=a right identity) $a \circ e = a$ for all $a \in S$ **.** <u>neutral</u> (=an identity) $e \circ a = a = a \circ e$ for all $a \in S$ **Example:** $S = \left\{ \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \mid x, y \in \mathbb{R} \right\}$ with o given by the matrix multiplication $\begin{pmatrix} 5, 0 \end{pmatrix}$ semigroup $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x & y \\ 0 & 0 \end{pmatrix} \implies \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ left neutral $\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 2 \\ 0 & 0 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ not right neutral

Fact: Let $e \in S$ be left neutral and $\widetilde{e} \in S$ be right neutral.

$$
e \circ a = a \implies e \circ \tilde{e} = \tilde{e}
$$
\n
$$
b \circ \tilde{e} = b \implies e \circ \tilde{e} = e \implies e = \tilde{e}
$$

 $Definition:$ (S, o) semigroup with identity e (the neutral element), $a, b, c \in S$.

\n- $$
\times
$$
 ϵ \leq is called a **left inverse of a** if \times **0** ϵ **0 0** ϵ **0 1 0** ϵ **0 1 0 0**

Example: Functions \oint : $[0,1] \rightarrow [0,1]$ $(\mathcal{F}([0,1])$, 0) semigroup Neutral element: $id : [0,1] \rightarrow [0,1]$, $X \mapsto X$ Right invertible: $\hat{\int}$. $[0,1] \rightarrow [0,1]$, $X \mapsto {4(X - \frac{1}{2})}^2$ **Right inverse of** \tilde{f} **:** $g: [0,1] \rightarrow [0,1]$, $X \mapsto \frac{1}{2} \sqrt{X} + \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ o $\frac{1}{2}$ = id $\overrightarrow{g} \circ \overrightarrow{f} \neq id$ Remember:
surjective \iff right invertible **injective left invertible**

This implies: A set G together with a binary operation o is a group if:

 $f(61)$ $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$ (associative) (62) There is a unique identity $e \in G$: $e \circ a = a \circ e$ **for all**

$$
(63) \quad \text{Each } a \in G \text{ is invertible: } \exists b \in G: \quad b \circ a = e = a \circ b
$$
\n
$$
\overline{a}^{1} := b \quad \text{(common notation)}
$$

Proof:
\n(a)
$$
\Rightarrow
$$
 (61)
\nLet aeG .
\n(b) There is a left identity eeG .
\n(c) Each aeG is left invertible, i.e. there exists beG with $ba = e$.
\n
\n(c) Each aeG is left invertible, i.e. there exists beG with $b \circ a = e$.
\n
\n(d) $ab = e$. Then $ab = a(eb) = a(ba)b = (ab)(ab)$.
\n
\nChoose ceG with $C(ab) = e$ (by (o))
\n $\Rightarrow ab = e(ab) = c(ab)(ab) = c(ab) = e \Rightarrow (G)$
\n $\Rightarrow ae = a(ba) = (ab)a = e \Rightarrow (G)$

Algebra - Part 5

 $Group:$ G together with binary operation \circ and: (G1) associativity $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ for all $a_1 b_1 c_2 c_1$ (G2) unique identity $e \in G$: $e \circ a = a = a \circ e$ for all $a \in G$ (G3) all inverses exist: $\forall a \in G \exists b \in G: b \circ a = e = a \circ b$ $\begin{pmatrix} 1 & 1 \ 1 & -1 & 1 \end{pmatrix}$ (common notation) Uniqueness of inverses: (S, o) semigroup with identity ee S. $(a \circ y = e)$ If $a \in S$ is a left invertible with $x \left(x \circ a = e \right)$ and right invertible withy, then $x = y$. Proof: $x = x \circ e = x \circ (a \circ y) = (x \circ a) \circ y = e \circ y = y$ \Box Examples: (a) $G = \{e\}$ with $e \circ e = e$, $e^{-1} = e$ (b) $G = \{e, a\}$ $\frac{0}{e} \frac{e}{e} \frac{a}{a}$ $\frac{1}{a} = a$

(c) $(\mathbb{Z}, +)$ with identity 0 and inverses $3 + (-3) = 0$

$$
\left(\mathbb{Q}\setminus\{0\},\cdot\right) \text{ with identity } 1 \text{ and inverses } \frac{1}{4} \cdot \left(\frac{1}{4}\right)^{-1} = 1
$$
\n
$$
\left(\mathbb{C}^{n \times n}, +\right) \text{ with identity } \begin{pmatrix} 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}
$$
\n
$$
\left(\begin{array}{c} \left\{\text{Re } \mathbb{C}^{n \times n} \mid \text{ det}(A) \neq 0 \right\}, \cdot \right) \text{ with identity } \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}
$$

General example: Let (S, \circ) be a semigroup with identity ee S. $S^* := \left\{ a \in S \mid a \text{ is invertible} \right\}$ $\int_{0}^{1} e^{x} \, dx$ Then (S^*, o) is a group. Proof: (1) $\cos z = e \Rightarrow e \in S^*$ with $e^{-1} = e \Rightarrow (G2)$ (2) $\alpha \in S^* \implies \tilde{\alpha}^1 \circ \alpha = e \implies \tilde{\alpha}^1 \in S^* \implies (G3)$ (3) associativity in $(a \circ b) \circ (b^{-1} \circ a^{-1}) \stackrel{\sqrt{2}}{=} a \circ (b \circ b^{-1}) \circ a^{-1} = e$ \Rightarrow (s^*, \circ) is a well-defined semigroup

 \Box

The Bright Side of Mathematics - https://tbsom.de/s/alg

Algebra - Part 6

semigroup. Let's write: group neutral element + all inverses

Fact: Let (G, o) be a group and $a, b, x, y \in G$. Then:

$$
\underbrace{\text{Proof:}}_{\text{neutral element}} \quad x = x \cdot e = x (b b^{-1}) = (x b) b^{-1} = (y b) b^{-1} = y (b b^{-1}) = y
$$

Definition:
$$
(S, \circ)
$$
 semigroup (or group).

\nThe order of S is the number of elements in S :

\nord(S) := $\begin{cases} |S| = #S & \text{if } S \text{ is finite} \\ \infty & \text{if } S \text{ is not finite} \end{cases}$

Lemma: Let (S, o) be a semigroup. Then:

$$
(S, \circ)
$$
 is group \Leftrightarrow $\forall a, b \in S$ $\exists x, \gamma \in S$: $ax = b$, $\gamma a = b$

Proof:
$$
(\Rightarrow)
$$
 Assume (S, \circ) is a group. For given $a, b \in S$, set:
 $X = \overline{a}^1 b$, $y = b \overline{a}^1$

$$
\leftarrow
$$
 For given $a \in S$, there are $x, y \in S$ with $ax = a$, $ya = a$.
Let's call $e := y$: $ea = a$

Let's take $b \in S$. Then there is $\tilde{x} \in S$ with $a\tilde{x} = b$.
We get: $eb = e(a\tilde{x}) = (ea)\tilde{x} = a\tilde{x} = b \implies e$ left neutral
For given $b \in S$ there is $\tilde{y} \in S$ such that: $\tilde{y}b = e \implies b$ left invertible
 $\implies (S, \circ)$ is a group

Proposition: Let (S, o) be a semigroup with $ord(S) < \infty$. Then: (S, \circ) is group \iff both cancellation properties hold $\left(\begin{array}{ccc} a x = a y & \Rightarrow & x = y \\ x b = y b & \Rightarrow & x = y \end{array}\right)$ Proof: For any map $f: S \longrightarrow S$: \int is injective \iff \int is surjective For given $a \in S$, define $f_a : S \longrightarrow S$ and $g_a : S \longrightarrow S$ by $f_{a}(x) = ax$, $g_{a}(x) = xa$. Then we have: both cancellation properties hold $\iff \forall a \in S:$ $f_a(x) = f_a(y) \implies x = y$ $g_{\alpha}(x) = g_{\alpha}(y) \implies x = y$ \iff $\forall a \in S$: \oint_{α} and g_{α} are injective \iff $\forall a \in S$: \oint_{a} and g_{a} are surjective \iff $\forall a \in S$: for every $b \in S$ there are $x,y \in S : f_a(x) = b$ and $g_a(y) = b$ $\frac{11}{\alpha x}$ Lemma \iff (S, \circ) is group \Box

 \Rightarrow (S_3, \circ) composition of maps

We get:
$$
(\int_{a}^{b} \delta_{b}](1) = 1
$$
, $(\int_{1}^{c} \delta_{a}f_{a})(1) = 2$
\n $(\int_{a}^{c} \delta_{b}f_{a})(2) = 3$, $(\int_{1}^{c} \delta_{a}f_{a})(2) = 1$
\n $(\int_{a}^{c} \delta_{b}f_{a})(2) = 2$, $(\int_{1}^{c} \delta_{a}f_{a})(2) = 3$
\n $(\int_{a}^{c} \delta_{b}f_{a})(3) = 2$, $(\int_{1}^{c} \delta_{a}f_{a})(3) = 3$
\n $(\int_{a}^{c} \delta_{b}f_{a})(3) = 2$
\n $(\int_{a}^{c} \delta_{a}f_{a})(3) = 3$
\n $(\int_{a}^{c} \delta_{a}f_{a})(3) = 2$, $(\int_{a}^{c} \delta_{a}f_{a})(2) = 1$
\n $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$, $(\int_{a}^{c} \delta_{a}f_{a})(2) = 1$
\n $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$, $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$
\n $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$, $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$
\n $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$, $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$
\n $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$, $(\int_{a}^{c} \delta_{a}f_{a})(2) = 2$
\n $(\int_{a}^{c} \delta_{a}f_{a})($

Non-abelian group: Symmetric group S_3 : $|S_3| = 3! = 6$

The Bright Side of Mathematics - https://tbsom.de/s/alg

Algebra - Part 8

modulus calculation: modulus γ $\chi \sim_{m} \gamma \iff$ There is (mod m) Integers modulo m: \mathbb{Z}_m , $\mathbb{Z}/m\mathbb{Z}$, \mathbb{Z}/m , \mathbb{Z}/m $\mathcal{Z}_m := \left\{ [0], [1], \ldots, [m-1] \right\},$ $m \in \mathbb{N}$ for example with $m = 12$: $\begin{bmatrix} 2 \end{bmatrix} = \begin{cases} 2 \\ 14 \\ -10 \\ -22 \\ ... \end{cases}$ define addition: $\begin{bmatrix} k \end{bmatrix} + \begin{bmatrix} l \end{bmatrix} := \begin{bmatrix} k+l \end{bmatrix}$ well-defined $[k] + [-k] = [0]$ identity **K** inverse \Rightarrow $(\mathbb{Z}_{m+}^n +)$ abelian group of order m Example: $(\mathbb{Z}_{2+} +)$: $[0] = \{0, 2, 4, ..., -2, -4, ...\}$ [0] [1] [0] [1] $[1] = \{1, 3, 5, 7, ..., -1, -3, ...\}$ [1] [1]

 $\left(\mathbb{Z}_{6}^{+}$ + $\right)$: $\left[\Omega\right] = \left\{0, 6, 12, ..., -6, -12, ...\right\}$ $[1], [2], [3], [4], [5]$

[0] [1] [2] [3] [4] [5] $+$ [0] [0] [1] [2] [3] [4] [5] [1] [1] [2] [2] [2] [4] [3] $[3] [3] [4] [5] [0]$ [4] [4] [2] [5] [0] [1] [5] [5] [4] [0] [1] [2] [3]

$$
x \mapsto e^{x} \implies \varphi(x+y) = e^{x} \implies \varphi(x+y) = e^{x} \implies e^{y}
$$

Properties: A group homomorphism satisfies:

(1)
$$
\psi(e_G) = e_H
$$
 (identity is sent to identify)
\n(2) $\psi(\tilde{a}^1) = \psi(a)^{-1}$ for all $a \in G$.

 $\frac{\text{Proof:}}{\text{}}$ (1) $\psi(e_6) = \psi(e_6 \circ e_6) = \psi(e_6) * \psi(e_6)$

$$
\Rightarrow e_{H} = \psi(e_{G})^{1} * \psi(e_{G}) = \psi(e_{G})^{1} * (\psi(e_{G}) * \psi(e_{G}))
$$

$$
= (\psi(e_{G})^{1} * \psi(e_{G})) * \psi(e_{G}) = \psi(e_{G})
$$

$$
= e_{H}
$$

 \Box

$$
P_{\mu} = \psi(e_{G}) = \psi(\overline{a}^{1} \circ a) = \psi(\overline{a}^{1}) * \psi(a)
$$

$$
\sum_{\text{inverse unique}}^{-1} \varphi(a) = \varphi(a^{-1})
$$

$$
e = x^1 \cdot x \implies x^2 \in H \quad \text{for all} \quad x \in H \implies (*)
$$

\n
$$
(\Leftarrow)
$$
 Assume (*), (**). Since $a \cdot b \in H$ for all $a, b \in H$,
\n
$$
\implies \circ : H \times H \implies H \text{ is well-defined!}
$$

\n
$$
\text{associative!} \quad (\text{G is a group})
$$

\nChoose $a \in H \implies a^1 \in H \implies a \cdot a^1 = e \in H$
\n
$$
\implies (H, \circ) \text{ is a group}
$$

<u>Example:</u> (a) (G, \circ) group. {ef is subgroup of is subgroup of trivial subgroups (b) $(\mathbb{Z},+)$ group, $m \in \mathbb{N}$. $m\mathbb{Z}:=\begin{cases} m \cdot k & k \in \mathbb{Z} \end{cases} \subseteq \mathbb{Z}$ \implies $(m\mathcal{Z}, +)$ subgroup of $(\mathcal{Z}, +)$ Recall: $\mathbb{Z}/_{m}\mathbb{Z}$ is a group \iff general construction G/\mathcal{H}

c C b a C
(G, a) with
$$
G = \{e, a, b, c\}
$$
 and o satisfying the table above

defines the so-called Klein four group, called K_{4} .

Proposition: Let (G, o) be a group with $ord(G) < \infty$, $H \subseteq G$ be a non-empty subset.

Then:
$$
H \leq G \iff \text{a} \circ \text{b} \in H
$$
 for all $a, b \in H$

Proof: (\Rightarrow) \checkmark (\Leftarrow) (H, \circ) semigroup of finite order and both cancellation properties hold

$$
\begin{pmatrix}\n a_{\circ}x = a_{\circ}y \implies & x = y \\
x_{\circ}b = y_{\circ}b \implies & x = y\n\end{pmatrix}
$$
\npart 6\n
$$
\implies (H, \circ) \text{ is a group}
$$

 \mathbb{R}^n

Example: $G = \{e, a, b, c\}$ Klein four-group. subgroups: $H_1 = \{e\}$, $H_2 = \{e, a\}$, $H_3 = \{e, b\}$, $H_4 = \{e, c\}$, $H_5 = G$ \rightarrow we have 5 subgroups

Then:
\n
$$
\varphi(x \circ y) = \varphi(x) * \varphi(y) = \alpha * b \in v
$$
\n
$$
\Rightarrow x \circ y \in \bar{\varphi}^{1}[y]
$$
\n
$$
\varphi(x^{-1}) = \varphi(x)^{-1} = \bar{\alpha}^{1} \in V
$$
\n
$$
\Rightarrow x^{-1} \in \bar{\varphi}^{1}[y] \implies (\bar{\varphi}^{1}[y], \circ) \text{ subgroup } \Box
$$

Special cases:	$\varphi: G \rightarrow H$ group homomorphism.
$\varphi^1[\{e\}] =: \text{Ker}(\varphi) \quad \text{kernel of } \varphi$	
$\varphi[G] =: \text{Ran}(\varphi) \quad \text{range of } \varphi$	
$(\text{im}(\varphi) \text{ image of } \varphi)$	
$\text{Example: } \varphi: \mathbb{Z} \longrightarrow \{e, a\}$	
$k \longmapsto \{e, h\}$	
$k \longmapsto \{e, h \text{ even}$	
$k \longmapsto \{e, h \text{ even}$	
$k \longmapsto \{e, h \text{ even}$	
$\text{Ker}(\varphi) = \{\text{even numbers}\} = 2\mathbb{Z} \quad \text{subgroup!}$	

Remember: This defines an equivalence relation on the set of subgroups of G .

Trivial for abelian groups:

\n
$$
g \cup g^{-1} = \left\{ u, g^{-1} \mid u \in U \right\} = U
$$

$$
\Rightarrow
$$
 $abc u$ and $a \in u$

Fact: If
$$
S \neq \emptyset
$$
 and $S^{-1} := \{s^{-1} | s \in S\}$, then:
 $\langle S \rangle = \{a_1 a_2 \cdots a_n \in G | n \in \mathbb{N}, a_1, ..., a_n \in S \cup S^{-1}\}$

Example: Symmetric group $S_3: S = \{a, b\}$, $S^1 = \{a^2, b\}$ \rightarrow ab, ba, bb = e ,... just six elements

$$
S_3 = \langle a, b \rangle
$$

Definition: A group G is called cyclic if there is element $g \in G$ such that $\langle 9 \rangle = 6$. In other words: $G = \{ g^k \mid k \in \mathbb{Z} \}$ with $g^0 :=$ identity element in G