-
Title: Cancellation Property
-
Series: Algebra
-
YouTube-Title: Algebra 6 | Cancellation Property
-
Bright video: https://youtu.be/Ncifg6nmu8U
-
Dark video: https://youtu.be/seiG04U6EEM
-
Ad-free video: Watch Vimeo video
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: alg06_sub_eng.srt missing
-
Definitions in the video: order of a group, order of a semigroup
-
Timestamps (n/a)
-
Subtitle in English (n/a)
-
Quiz Content
Q1: What is the order of the group $G = (\mathbb{R}, +)$, written as $\mathrm{ord}(G)$?
A1: $1$
A2: $2$
A3: $\infty$
A4: $n$
Q2: What is the order of the group $G = ({ e,a }, \circ) $ where $a \circ a = e$.
A1: $1$
A2: $2$
A3: $\infty$
A4: $n$
Q3: Let $(S, \circ)$ be a semigroup. What is the statement of the right-cancellation property?
A1: If $x b = y b$, then $x = y$.
A2: If $x b = y a$, then $x = y$.
A3: If $b x = y a$, then $x = y$.
A4: If $b x = b y$, then $x = y$.
Q4: Let $(S, \circ)$ be a semigroup given by the following sets of matrices together with the matrix multiplication: $$ \left{ \begin{pmatrix} a & b \ 0 & 0 \end{pmatrix} \biggm| a,b \in \mathbb{R} \right} $$ Do we have the right-cancellation property here?
A1: No, we find counterexamples!
A2: Yes!
-
Last update: 2024-11