ON STEADY

The Bright Side of Mathematics

Abstract Linear Algebra - Part 31

 $l: V \longrightarrow W$ linear, V, W F - vector spaces (finite-dimensional).

<u>Proposition:</u> $l: V \longrightarrow W$ linear, $V, W \not\models - vector spaces, <math>b \in W$.

The solution set $S := \{x \in V \mid l(x) = b\}$

is either empty or an affine subspace: $S = \emptyset$ or

$$S' = X_0 + Ker(1)$$
 (with $x_0 \in V$)

<u>Proof:</u> Assume $X_o \in S$ $(l(X_o) = b)$.

Take any $V \in V$ and look at $X_0 + V$: $X_0 + V \in S \iff \ell(X_0 + V) = b \iff \ell(X_0) + \ell(V) = b$

 $\iff \ell(\mathbf{v}) = 0 \iff \mathbf{v} \in \mathsf{Ker}(\ell)$

Rank-nullity theorem: $\int : \bigvee \longrightarrow \bigvee$ linear, \bigvee , \bigvee F - vector spaces (finite-dimensional)

 $\dim(\operatorname{Ran}(L)) + \dim(\operatorname{Ker}(L)) = \dim(V)$ $||\operatorname{Part} 28/24|$

with matrix | part 28/29 | representations

 $\longrightarrow \dim(\operatorname{Ran}(\ell_{c \in \mathfrak{z}})) + \dim(\operatorname{Ker}(\ell_{c \in \mathfrak{z}})) = h$