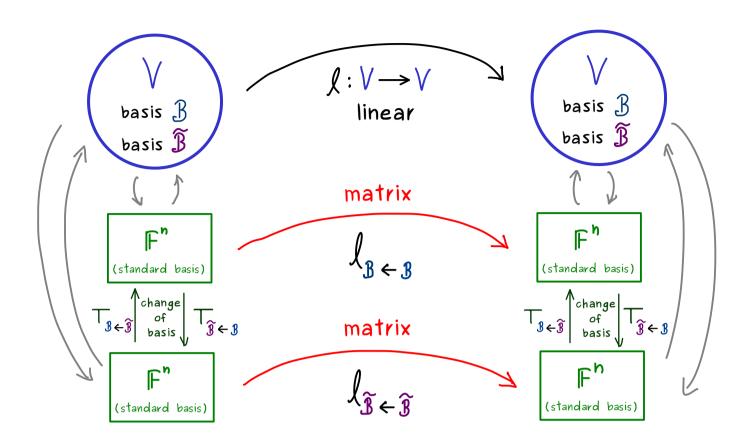


Abstract Linear Algebra - Part 30



We have:

$$\begin{array}{rcl}
l_{\widetilde{\mathfrak{J}} \leftarrow \widetilde{\mathfrak{J}}} & = & T_{\widetilde{\mathfrak{J}} \leftarrow \mathfrak{J}} & l_{\mathfrak{J} \leftarrow \widetilde{\mathfrak{J}}} & T_{\mathfrak{J} \leftarrow \widetilde{\mathfrak{J}}} \\
 & | & | & | & | & | & | & | & | \\
\widetilde{A} & = & T^{-1} & A & T
\end{array}$$

Definition:

A matrix $\widetilde{A} \in \mathbb{F}^{n \times n}$ is called similar to a matrix $A \in \mathbb{F}^{n \times n}$

if there is an invertible $T \in \mathbb{F}^{n \times n}$ such that:

$$\widehat{A} = \overline{T}^1 A T.$$

We write: $\widetilde{A} \approx A$.

Remark:

 \approx defines an equivalence relation on $\mathbb{F}^{n \times n}$:

(1) reflexive: $A \approx A$ for all $A \in \mathbb{F}^{n \times n}$

(2) symmetric: $A \approx B \implies B \approx A$ for all $A, B \in \mathbb{F}^{n \times n}$

(3) transitive: $A \approx B \land B \approx C \implies A \approx C$ for all $A,B,C \in \mathbb{F}^{n \times n}$

Easy to see:
$$A \approx B \implies A \sim B$$

Example:
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$
 but $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \not\approx \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$

$$T^{-1}\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} T = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

pprox is characterized by the so-called Jordan normal form