

Abstract Linear Algebra - Part 28

Fact:
$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
 and $\begin{pmatrix} 3 & -2 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix}$ are different but

they describe the <u>same</u> linear map $l: \mathbb{P}_3(\mathbb{R}) \longrightarrow \mathbb{P}_2(\mathbb{R}), \ l(p) = p^1$ with respect to different bases.

Question: $l: V \longrightarrow W$ linear, $A = l_{c \leftarrow 3} \in \mathbb{F}^{m \times n}$.

For another $\widetilde{A} \in \mathbb{F}^{m \times n}$, can we find bases such that $\widetilde{A} = \mathcal{L}_{\widetilde{\mathcal{C}} \leftarrow \widetilde{\mathcal{B}}}$?

If YES!, then we say A and \widetilde{A} are equivalent.

Definition: A matrix $\widetilde{A} \in \overline{\mathbb{F}}^{m \times n}$ is called equivalent to a matrix $A \in \overline{\mathbb{F}}^{m \times n}$ if there are invertible matrices $S \in \overline{\mathbb{F}}^{m \times m}$, $T \in \overline{\mathbb{F}}^{n \times n}$, such that: $\widetilde{A} = S A T.$

We write:
$$\widehat{A} \sim A$$

Remark: \sim defines an equivalence relation on \vdash

- (1) reflexive: $A \sim A$ for all $A \in \mathbb{F}^{m \times n}$
- (2) symmetric: $A \sim B \implies B \sim A$ for all $A, B \in \mathbb{F}^{m \times n}$
- (3) transitive: $A \sim B \wedge B \sim C \implies A \sim C$ for all $A, B, C \in \mathbb{F}^{m \times n}$