

Abstract Linear Algebra - Part 24

 $l: \bigvee \longrightarrow \bigvee$ linear map preserves the structure of the vector space.

(vector space) homomorphism

Reminder: (just maps on sets) $f: V \longrightarrow W$ is called <u>invertible</u> if there is a map

$$g: W \longrightarrow V$$
 with $g \circ f = id_V$ and $f \circ g = id_W$
 $g \circ f = id_V$ and $f \circ g = id_W$

f bijective \Longrightarrow f invertible

Fact: $l: V \longrightarrow W$ linear + bijective $\longrightarrow l^{-1}: W \longrightarrow V$ linear

(see part 31 in "Linear Algebra")

Example:

Definition: $\int : \bigvee \longrightarrow \bigvee$ homomorphism + $\int_{-1}^{-1} : \bigvee \longrightarrow \bigvee$ homomorphism

is called an isomorphism

Remember: (vector space) isomorphism — bijective linear map

//
linear isomorphism