ON STEADY

The Bright Side of Mathematics

Abstract Linear Algebra - Part 24

 $\int : V \longrightarrow W$ linear map preserves the structure of the vector space.

(vector space) homomorphism

Reminder: (just maps on sets) $f: V \longrightarrow W$ is called <u>invertible</u> if there is a map $g: W \longrightarrow V \text{ with } g \circ f = \mathrm{id}_V \text{ and } f \circ g = \mathrm{id}_W$

$$\Rightarrow$$
 denoted by f

f bijective \Longrightarrow f invertible

<u>Fact:</u> $l: V \longrightarrow W$ linear + bijective \longrightarrow $l^{-1}: W \longrightarrow V$ linear

(see part 31 in "Linear Algebra")

Example:

<u>Definition:</u> $\int : \bigvee \longrightarrow \bigvee$ homomorphism + $\int_{-1}^{-1} : \bigvee \longrightarrow \bigvee$ homomorphism

is called an isomorphism

Remember: (vector space) isomorphism = bijective linear map

//
linear isomorphism