ON STEADY

The Bright Side of Mathematics

Abstract Linear Algebra - Part 22

Recall: $f: \mathbb{R}^n \to \mathbb{R}^m$ linear \iff matrix $A \in \mathbb{R}^{m \times n}$

Definition: Let V, W be two F-vector spaces. (same F for both)

A map $f: V \longrightarrow W$ is called <u>linear</u> if:

(1)
$$f(u+v) = f(u) + f(v)$$

vector addition in V

vector addition in W

(2)
$$f(\lambda \cdot u) = \lambda \cdot f(u)$$

scalar multiplication in V

for all $u, v \in V$, $\lambda \in \mathbb{F}$.

Remember: $f(0_V) = f(0 \cdot u) \stackrel{(2)}{=} 0 \cdot f(u) = 0_W$

Example: (a) $V = \mathbb{F}^3$, $W = \mathbb{F}$, as V.

$$f(u) := \langle \alpha, u \rangle_{\text{standard}}$$
 is a linear map.

 $a^* u \text{ (matrix multiplication)}$

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} \overline{\alpha}_1 & \overline{\alpha}_2 & \overline{\alpha}_3 \end{pmatrix}$$

(transpose + complex conjugation)

(b) $V = P_3(\mathbb{R}), W = P_2(\mathbb{R})$

is a linear map:
$$l(p+q) = (p+q)' = p' + q' = l(p) + l(q)$$

$$l(\lambda p) = (\lambda p)' = \lambda p' = \lambda l(p)$$