ON STEADY

The Bright Side of Mathematics

Abstract Linear Algebra - Part 21

 \forall [F-vector space, inner product $\langle \cdot, \cdot \rangle$, $U \subseteq \forall$ k-dimensional subspace.

basis of
$$U: (u_1, u_2, ..., u_k) \longrightarrow ONB of $U: (b_1, b_2, ..., b_k)$
Gram-Schmidt
process/algorithm$$

Example:

$$V = P([-1,1], R)$$
 polynomial space with inner product:

$$\langle f, g \rangle = \int_{-1}^{1} f(x) g(x) dx$$

Take
$$\mathcal{M} = \mathcal{P}_2([-1,1], \mathbb{R})$$
 with basis (m_0, m_1, m_2) $m_0: X \mapsto 1$
 \swarrow $m_1: X \mapsto X$

polynomials of degree
$$\leq 2$$
) (not ONB: $m_2: X \mapsto X^2$

Gram-Schmidt orthonormalization:

- (1) Normalize first vector: $||m_0||^2 = \langle m_0, m_0 \rangle = \int_{-1}^{1} 1 \cdot 1 \, dx = 2$ $b_{o} := \frac{1}{\|m_{o}\|} \cdot m_{o} = \frac{1}{\sqrt{2}} m_{o} , \qquad b_{o}(x) = \frac{1}{\sqrt{2}}$
- (2) Next vector my:

(3) Next vector
$$m_2$$
:

(Legendre polynomials)