ON STEADY

The Bright Side of Mathematics

Abstract Linear Algebra - Part 18

Assumption: $V \not\vdash -vector space$, inner product $\langle \cdot, \cdot \rangle$, $U \subseteq V \not\vdash -dimensional subspace$.

Orthogonal projection: For
$$x \in V$$
: $X = X|_{U} + X|_{U}^{\perp}$ can be calculated: $\mathcal{B} = (b_1, b_2, \dots, b_k)$ basis of \mathcal{U}

$$G(B)\begin{pmatrix} \lambda_{1} \\ \vdots \\ \lambda_{k} \end{pmatrix} = \begin{pmatrix} \langle b_{1}, x \rangle \\ \vdots \\ \langle b_{k}, x \rangle \end{pmatrix} \longrightarrow \text{solving LES gives } X|_{U}$$

Gramian matrix

$$G(\mathcal{B}) = \begin{pmatrix} \langle b_1, b_1 \rangle & \langle b_1, b_2 \rangle & \cdots & \langle b_1, b_k \rangle \\ \langle b_2, b_1 \rangle & \langle b_2, b_2 \rangle & \cdots & \langle b_2, b_k \rangle \\ \vdots & & & & & \\ \langle b_k, b_1 \rangle & \langle b_k, b_2 \rangle & \cdots & \langle b_k, b_k \rangle \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$
identity matrix

$$\Rightarrow$$
 $X|_{U} = \sum_{j=1}^{k} b_j \langle b_j, x \rangle$

<u>Definition:</u> V \mathbb{F} -vector space, inner product $\langle \cdot, \cdot \rangle$, $U \subseteq V$ k-dimensional subspace.

A family (b_1, b_2, \dots, b_m) (with $b_j \in U$) is called:

- orthogonal system (OS) if $\langle b_i, b_j \rangle = 0$ for all $i \neq j$
- orthonormal system (ONS) if $\langle b_i, b_j \rangle = \delta_{ij}$
- ullet orthogonal basis (OB) if it's an OS and a basis of ${f U}$
- orthonormal basis (ONB) if it's an ONS and a basis of U

Example: \mathbb{R}^3 with standard inner product, $\left(\begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix}\right)$ ONB of \mathbb{R}^3 .