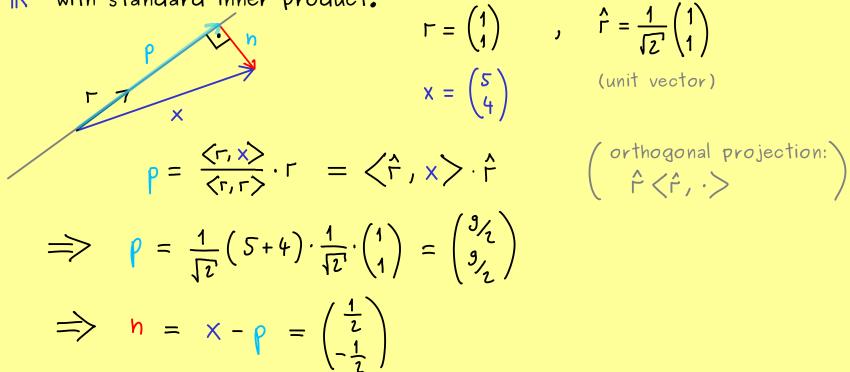
ON STEADY

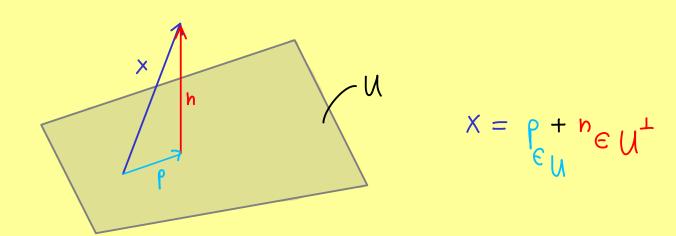
The Bright Side of Mathematics

Abstract Linear Algebra - Part 15

Example: \mathbb{R}^2 with standard inner product.



Generalization:



Important fact: $U \cap U^{\perp} = \{0\}$ for every subspace $U \subseteq V$

Proposition: $V \Vdash -\text{vector space}$, inner product $\langle \cdot, \cdot \rangle : V \times V \longrightarrow \Vdash$.

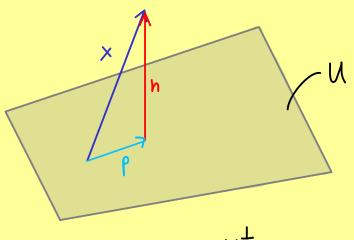
Let $U \subseteq V$ be a k-dimensional subspace, $\mathcal{B} = (b_1, b_2, \dots, b_k)$ basis of U.

Then for $y \in V : y \perp u$ for all $u \in U$ \Leftrightarrow $y \perp b_j$ for all $j \in \{1, 2, \dots, k\}$

Proof: (\Longrightarrow) \checkmark (\Leftarrow) We assume: $\langle y, b_j \rangle = 0$ for all $j \in \{1, 2, ..., k\}$ $\Rightarrow \sum_{j=1}^{k} \lambda_j \langle y, b_j \rangle = 0$ $\Rightarrow \langle y, \sum_{j=1}^{k} \lambda_j b_j \rangle = 0 \Rightarrow \begin{cases} 3 \text{ basis} \\ \text{for all } u \in M \end{cases}$

Orthogonal projection onto a subspace:

V F-vector space, inner product $\langle \cdot, \cdot \rangle$, $U \subseteq V$ k-dimensional subspace.



For $X \in V$ and a decomposition $X = \rho + n$ with $\rho \in U$, $n \in U^{\perp}$,

we call:

p orthogonal projection of x onto U

h normal component of χ with respect to U