

Abstract Linear Algebra - Part 14

Definition:

 \bigvee \mathbb{F} -vector space, inner product $\langle \cdot, \cdot \rangle$: $\bigvee \times \bigvee \longrightarrow \mathbb{F}$.

Let $U \subseteq V$ be a subspace with U = Span(r), $r \neq 0$.

For $X \in V$ and a decomposition X = p + n with $p \in U$, $n \perp r$, we call:

p orthogonal projection of x onto U

n normal component of x with respect to U

Let's show the uniqueness:

Assume
$$X = P + P \times X = P + P \times Y = P$$

$$\Rightarrow p + n = \tilde{p} + \tilde{n} \Rightarrow \underbrace{p - \tilde{p}}_{\in U} = \underbrace{\tilde{n} - n}_{\in U}$$

$$\Rightarrow 0 = \langle \rho - \tilde{\rho}, \tilde{n} - n \rangle = \begin{cases} \langle \rho - \tilde{\rho}, \rho - \tilde{\rho} \rangle \\ \langle \tilde{n} - n, \tilde{n} - n \rangle \end{cases}$$

inner product is positive definite

$$\implies \rho - \widetilde{p} = 0 = \widetilde{n} - n \implies \rho = \widetilde{p}$$
 and $n = \widetilde{n}$

Existence:
$$\rho \in U = Span(r) \implies \rho = \lambda \cdot r \text{ for } \lambda \in \mathbb{F}$$

$$\langle r, x \rangle = \langle r, \lambda \cdot r + n \rangle = \lambda \langle r, r \rangle + \langle r, n \rangle$$

$$\Rightarrow \lambda = \frac{\langle r, x \rangle}{\langle r, r \rangle} \longrightarrow \rho = \frac{\langle r, x \rangle}{\langle r, r \rangle} \cdot r , n = x - p$$