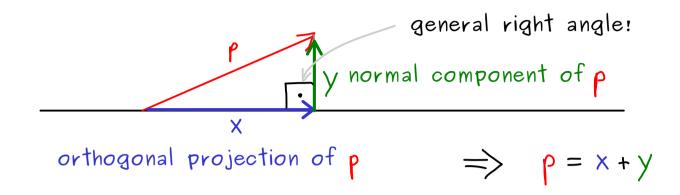


Abstract Linear Algebra - Part 13



Definition: $V \Vdash -\text{vector space}$, inner product $\langle \cdot, \cdot \rangle : V \times V \longrightarrow \mathbb{F}$.

We say $X, Y \in V$ are orthogonal, written as $X \perp Y$,

if $\langle X, Y \rangle = 0$.

Example: $P([-1,1], \mathbb{F})$ polynomial space, $\langle f, g \rangle = \int_{-1}^{1} \overline{f(x)} g(x) dx$ $\begin{cases} \rho_1 : x \mapsto x \\ \rho_2 : x \mapsto x^2 \end{cases} \implies \langle \rho_1, \rho_2 \rangle = \int_{-1}^{1} x^3 dx = 0 \implies \rho_1 \perp \rho_2$

<u>Definition:</u> $V \text{ } F\text{-vector space, inner product } \langle \cdot, \cdot \rangle : V \times V \longrightarrow F.$ For $M \subseteq V$, $M \neq \emptyset$, we define the o<u>rthogonal complement:</u>

