ON STEADY

## The Bright Side of Mathematics



## Abstract Linear Algebra - Part 6

subset of F(R) given by:

cos: 
$$\mathbb{R} \to \mathbb{R} \longrightarrow$$

sin: 
$$\mathbb{R} \to \mathbb{R} \longrightarrow$$

exp: 
$$\mathbb{R} \to \mathbb{R} \longrightarrow$$

$$\mathcal{N} := \operatorname{Span}(\cos, \sin, \exp)$$

Is  $(\cos, \sin, \exp)$  a basis of U? Question:

We have to check:  $\alpha_1 \cdot \cos + \alpha_2 \cdot \sin + \alpha_3 \cdot \exp = 0 \implies \alpha_j = 0$  for all j

means:

zero vector in  $\mathcal{F}(\mathbb{R})$ 

Since 
$$\det\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & e^{\pi / 2} \\ 1 & 0 & e^{1000\pi} \end{pmatrix} = e^{-1000\pi} + 0 + 0 - 1 - 0 - 0 < 0$$

the system of linear equations is uniquely solvable.

$$\implies \alpha_1 = \alpha_2 = \alpha_3 = 0 \qquad \implies_{//} (\cos, \sin, \exp) \text{ basis of } \mathbb{N}$$

Basis isomorphism: 
$$\Phi_{\mathfrak{Z}}: \mathcal{V} \longrightarrow \mathbb{R}^3$$
,

defined by 
$$\Phi_{\mathfrak{Z}}(\cos) = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \Phi_{\mathfrak{Z}}(\sin) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \Phi_{\mathfrak{Z}}(\exp) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

What about  $V: \mathbb{R} \to \mathbb{R}$ ,  $V(x) = 7\cos(x) + 2\exp(x)$ 

$$\Phi_{\mathfrak{Z}}(\vee) = \begin{pmatrix} 7 \\ 0 \\ 2 \end{pmatrix}$$

 $\Phi_{3}(v) = \begin{pmatrix} 7 \\ 0 \\ 2 \end{pmatrix}$  is completely represented by  $\mathbb{R}^{3}$