

Abstract Linear Algebra - Part 5

Coordinates with respect to a basis:

Assumptions: $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, \mathbb{V} \mathbb{F} -vector space with $\dim(\mathbb{V}) = n < \infty$,

$$\mathcal{B} = (b_1, b_2, \dots, b_n)$$
 basis of V .

Then: each vector $\bigvee \in \bigvee$ can be uniquely

b₁

written as:

$$V = \alpha_1 b_1 + \alpha_2 b_2 + \cdots + \alpha_n b_n$$
 with $\alpha_j \in F$

Definition: α_j are called the <u>coordinates</u> of γ with respect to β .

Remember:
$$V = \sum_{j=1}^{n} x_{j} b_{j}$$
 \longleftrightarrow $\begin{cases} 1:1 \\ x_{k} \\ x_{k} \end{cases} \in \mathbb{F}^{n}$ coordinate vector

Picture:

abstract vector
$$\mathbf{S}$$
 fix basis \mathbf{B} $\mathbf{$

Define:
$$\Phi_{\mathbf{g}}(\alpha_1 b_1 + \cdots + \alpha_n b_n) = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

 $\Phi_{\mathfrak{z}}: V \longrightarrow \mathbb{F}^n$ is a <u>linear map</u>:

$$\Phi_{\mathfrak{g}}(\vee + \vee) = \Phi_{\mathfrak{g}}(\vee) + \Phi_{\mathfrak{g}}(\vee)$$

$$\Phi_{\mathfrak{g}}(\wedge \vee) = \wedge \Phi_{\mathfrak{g}}(\vee)$$