

Abstract Linear Algebra - Part 4

We know:
$$P_k(\mathbb{R}) := \{ \text{ polynomials with degree } \leq k \}$$

$$P_{\bullet}(\mathbb{R}) \subseteq P_{\bullet}(\mathbb{R}) \subseteq P_{\bullet}(\mathbb{R}) \subseteq \cdots \subseteq P(\mathbb{R}) \subseteq \mathcal{F}(\mathbb{R})$$
subspace subspace subspace subspace

Definition: V F-vector space:

(a) For
$$V_1, ..., V_k \in V$$
, $\alpha_1, ..., \alpha_k \in F$,
$$\sum_{j=1}^k \alpha_j V_j \quad \text{is called a } \underline{\text{linear combination}}.$$

(b) For subset $M \subseteq V$:

(c) A set $M \subseteq V$ is called a generating set of a subspace $U \subseteq V$ if Span(M) = U

(d) A set $M \subseteq V$ is called a <u>linearly independent</u> if for all $k \in \mathbb{N}$ and $y \in V$:

$$0 = \sum_{j=1}^{k} \alpha_{j} \vee_{j} \implies \alpha_{1} = \alpha_{2} = \cdots = \alpha_{k} = 0$$

- (e) A set $M\subseteq V$ (or an ordered family $M=(V_1,...,V_k)$) is called a <u>basis</u> of a subspace $M\subseteq V$ if M is <u>generating</u> and <u>lin. independent</u>.
- (f) The number of elements in a basis of U is called the dimension of U cardinality of M dim(U) $\in \{0,1,2,3,...\}$ $\cup \{\infty\}$

Example:

(1)
$$\dim(P_o(\mathbb{R})) = 1$$
 \Rightarrow basis $M = (X \mapsto 1)$ space of constant functions/polynomials $\mathbb{R} \rightarrow \mathbb{R}$

(2)
$$\dim(P_2(\mathbb{R})) = 3$$
 $\Rightarrow \text{basis } M = (X \mapsto 1, X \mapsto X^2)$ polynomials of degree ≤ 2

dim(
$$\mathcal{F}(\mathbb{R})$$
) = ∞

(4)
$$\dim(\mathbb{C}^{2\times 3}) = 6$$