ON STEADY

The Bright Side of Mathematics

Abstract Linear Algebra - Part 4

We know:
$$P_k(R) := \{ \text{ polynomials with degree } \leq k \}$$

$$P_{\mathbf{c}}(\mathbb{R}) \subseteq P_{\mathbf{c}}(\mathbb{R}) \subseteq P_{\mathbf{c}}(\mathbb{R}) \subseteq \cdots \subseteq P(\mathbb{R}) \subseteq \mathcal{F}(\mathbb{R})$$
subspace subspace subspace subspace

Definition: V F-vector space:

(a) For
$$V_1, ..., V_k \in V$$
, $\alpha_1, ..., \alpha_k \in \mathbb{F}$,
$$\sum_{j=1}^k \alpha_j V_j \quad \text{is called a } \underline{\text{linear combination}}.$$

(b) For subset $M \subseteq V$:

Span(M) := all possible linear combinations with vectors from M $\}$

$$Span(\emptyset) := \{0\} \iff subspace in V$$

(c) A set $M \subseteq V$ is called a generating set of a subspace $U \subseteq V$ if

$$Span(M) = \bigcup$$

(d) A set $M \subseteq V$ is called a <u>linearly independent</u> if for all $k \in \mathbb{N}$ and $y \in M$:

$$0 = \sum_{j=1}^{k} \langle_j \rangle_j \qquad \Longrightarrow \qquad \langle_1 = \langle_2 = \cdots = \langle_k = 0 \rangle$$

- (e) A set $M \subseteq V$ (or an ordered family $M = (V_1, ..., V_k)$) is called a <u>basis</u> of a subspace $U \subseteq V$ if M is generating and <u>lin. independent</u>.
- (f) The number of elements in a basis of U is called the <u>dimension of U</u> cardinality of M $dim(U) \in \{0,1,2,3,...\} \cup \{\infty\}$

Example:

(1) $\dim(P_o(\mathbb{R})) = 1$ \Rightarrow basis $M = (x \mapsto 1)$ space of constant functions/polynomials $\mathbb{R} \rightarrow \mathbb{R}$

(2)
$$\dim(P_2(\mathbb{R})) = 3$$
 $\Rightarrow \text{basis } M = (X \mapsto 1, X \mapsto X, X \mapsto X^2)$ polynomials of degree ≤ 2

- dim $(\mathcal{F}(\mathbb{R})) = \infty$
- (4) $\dim(\mathbb{C}^{2\times 3}) = 6$ ($\mathbb{C}^{2\times 3}$ seen as a complex vector space)