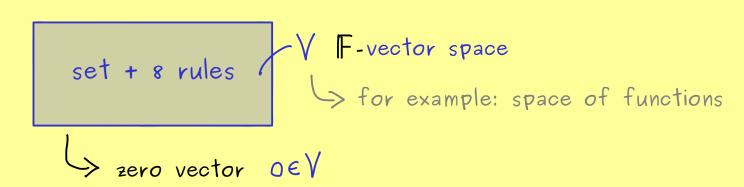
ON STEADY

The Bright Side of Mathematics

Abstract Linear Algebra - Part 3



Question:
$$0 \cdot v = 0 \not= 2ero \ vector$$
, $(-1) \cdot v = -v$ for $v \in V ?$

Proof:
$$0 \cdot V = (0+0) \cdot V = 0 \cdot V + 0 \cdot V$$
 associativity (1)

$$\Rightarrow 0 \cdot V + (-(0 \cdot V)) = 0 \cdot V + (-(0 \cdot V))$$

$$\Rightarrow 0 = 0 \cdot V$$

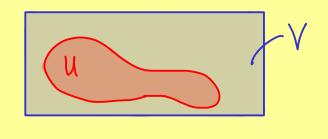
$$= (1 + (-1)) \cdot V = 1 \cdot V + (-1) \cdot V$$

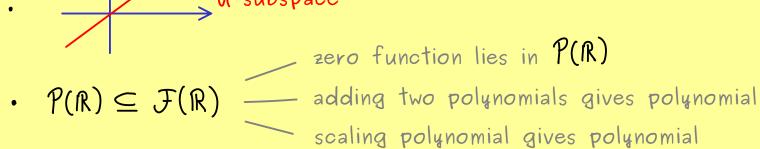
$$(8)$$

$$= (1 + (-1)) \cdot V = 1 \cdot V + (-1) \cdot V$$

$$(6) \cdot V = (-1) \cdot V = (-1) \cdot V$$

Linear subspace: • vector space inside another one





Definition: \bigvee F-vector space, \bigvee \subseteq \bigvee . If

- (a) 0∈W,
- (b) $u, v \in U \implies u + v \in U$,
- (c) $u \in U$, $\lambda \in \mathbb{F} \implies \lambda \cdot u \in U$,

then \bigcup is also an F-vector space. We call it a <u>linear subspace</u> of \bigvee .

 $P_{2}(\mathbb{R})$ polynomials with degree ≤ 2 $(x \mapsto 4x^{2} + x, x \mapsto 8x + 1)$ Example: $\Longrightarrow P_1(\mathbb{R}) \subseteq \mathcal{F}(\mathbb{R})$ subspace