ON STEADY ## The Bright Side of Mathematics ## Abstract Linear Algebra - Part 3 Question: $$0 \cdot v = 0 \not= 2ero \ vector$$, $(-1) \cdot v = -v$ for $v \in V ?$ Proof: $$0 \cdot V = (0+0) \cdot V = 0 \cdot V + 0 \cdot V$$ associativity (1) $$\Rightarrow 0 \cdot V + (-(0 \cdot V)) = 0 \cdot V + (-(0 \cdot V))$$ $$\Rightarrow 0 = 0 \cdot V$$ $$= (1 + (-1)) \cdot V = 1 \cdot V + (-1) \cdot V$$ $$(8)$$ $$= (1 + (-1)) \cdot V = 1 \cdot V + (-1) \cdot V$$ $$(6) \cdot V = (-1) \cdot V = (-1) \cdot V$$ Linear subspace: • vector space inside another one Definition: \bigvee F-vector space, \bigvee \subseteq \bigvee . If - (a) 0∈W, - (b) $u, v \in U \implies u + v \in U$, - (c) $u \in U$, $\lambda \in \mathbb{F} \implies \lambda \cdot u \in U$, then \bigcup is also an F-vector space. We call it a <u>linear subspace</u> of \bigvee . $P_{2}(\mathbb{R})$ polynomials with degree ≤ 2 $(x \mapsto 4x^{2} + x, x \mapsto 8x + 1)$ Example: $\Longrightarrow P_1(\mathbb{R}) \subseteq \mathcal{F}(\mathbb{R})$ subspace