• Title: Example for General Linear Equation

  • Series: Abstract Linear Algebra

  • YouTube-Title: Abstract Linear Algebra 32 | Example for General Linear Equation

  • Bright video: https://youtu.be/bkQ2L-fyLpw

  • Dark video: https://youtu.be/zL1nu5TVoeY

  • Ad-free video: Watch Vimeo video

  • Quiz: Test your knowledge

  • PDF: Download PDF version of the bright video

  • Dark-PDF: Download PDF version of the dark video

  • Print-PDF: Download printable PDF version

  • Thumbnail (bright): Download PNG

  • Thumbnail (dark): Download PNG

  • Subtitle on GitHub: ala32_sub_eng.srt missing

  • Timestamps (n/a)
  • Subtitle in English (n/a)
  • Quiz Content

    Q1: Let $\ell: V \rightarrow V$ be a linear map where $V = \mathcal{P}_3(\mathbb{R})$ and $\ell(p) = p^\prime$. What is not correct?

    A1: $\mathrm{dim}( \mathrm{Ran} ) (\ell) = 4$

    A2: $\mathrm{dim}( \mathrm{Ran} ) (\ell) = 3$

    A3: $\mathrm{dim}( \mathrm{Ker} ) (\ell) = 1$

    A4: $\mathrm{dim}( \mathrm{Ker} ) (\ell) + \mathrm{dim}( \mathrm{Ran} ) (\ell) = 4$

    Q2: Let $\ell: V \rightarrow V$ be a linear map where $V = \mathcal{P}3(\mathbb{R})$ and $\ell(p) = p^\prime$. Let $\mathcal{B} = (m_0, m_1, m_2, m_3)$ be a basis of $V$. What is $\ell{\mathcal{B} \leftarrow \mathcal{B}}$?

    A1: $\ell_{\mathcal{B} \leftarrow \mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 2 & 0 \ 0 & 0 & 0 & 3 \ 0 & 0 & 0 & 0 \ \end{pmatrix}$

    A2: $\ell_{\mathcal{B} \leftarrow \mathcal{B}} = \begin{pmatrix} 0 & 0 & 0 & 0 \ 3 & 0 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 0 & 1 & 0 \ \end{pmatrix}$

    A3: $\ell_{\mathcal{B} \leftarrow \mathcal{B}} = \begin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 2 & 0 & 0 \ 0 & 3 & 0 & 0 \ \end{pmatrix}$

    A4: $\ell_{\mathcal{B} \leftarrow \mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 2 & 0 & 0 \ \end{pmatrix}$

    Q3: Let $\ell: V \rightarrow V$ be a linear map where $V = \mathcal{P}_3(\mathbb{R})$ and $\ell(p) = p^\prime$. Is the equation $\ell(x) = b$ solvable?

    A1: Only if $b \in \mathrm{Span}(m_0, m_1, m_2)$.

    A2: Only if $b \in \mathrm{Ker}(\ell)$.

    A3: Only if $b \neq 0$

    A4: No, never!

    A5: Yes, always!

  • Date of video: 2024-10-13

  • Last update: 2025-01

  • Back to overview page


Do you search for another mathematical topic?