-
Title: Examples of Abstract Vector Spaces
-
Series: Abstract Linear Algebra
-
Chapter: General vector spaces
-
YouTube-Title: Abstract Linear Algebra 2 | Examples of Abstract Vector Spaces
-
Bright video: https://youtu.be/ZA4rGQ2oGnM
-
Dark video: https://youtu.be/ppJE8Y1cNlI
-
Quiz: Test your knowledge
-
Dark-PDF: Download PDF version of the dark video
-
Print-PDF: Download printable PDF version
-
Thumbnail (bright): Download PNG
-
Thumbnail (dark): Download PNG
-
Subtitle on GitHub: ala02_sub_eng.srt missing
-
Timestamps
00:00 Introduction
00:36 Definition of a vector space
01:39 Examples
02:48 Function Spaces
08:01 Polynomial Space
10:00 Linear Subspace
11:55 Credits
-
Subtitle in English (n/a)
-
Quiz Content
Q1: Consider the real vector space $\mathcal{P}(\mathbb{R})$ given by the polynomials. What is the vector addition of $p_1(x) = x^2$ and $p_2(x) = -(x-1)^2$?
A1: $(p_1 + p_2)(x) = 2x -1$
A2: $(p_1 + p_2)(x) = 2x + 1$
A3: $(p_1 + p_2)(x) = x^2 + 2x -1$
A4: $(p_1 + p_2)(x) = x^2 + 2x + 1$
A5: It’s not defined.
Q2: Consider the real vector space $\mathcal{P}(\mathbb{R})$ given by the polynomials. Is the element $x \mapsto \sum_{k = 1}^n \frac{x^k}{k!}$ an element of $\mathcal{P}(\mathbb{R})$ for any given $n \in \mathbb{N}$?
A1: Yes, it is.
A2: No, it is not a polynomial.
A3: No, it’s not a well-defined function.
A4: One needs more information.
Q3: Consider the real vector space $\mathcal{P}(\mathbb{R})$ given by the polynomials. Is the element $x \mapsto \sum_{k = 1}^\infty \frac{x^k}{k!}$ an element of $\mathcal{P}(\mathbb{R})$?
A1: Yes, it is.
A2: No, it is not a polynomial.
A3: No, it’s not a well-defined function.
A4: One needs more information.